
User’s Guide
Version 1

Simulink® Parameter
Estimation
For Use with Simulink®

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information
508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Simulink Parameter Estimation User’s Guide
© COPYRIGHT 2004-2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or Docu-
mentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modifica-
tion, reproduction, release, performance, display, and disclosure of the Program and Documentation by the
federal government (or other entity acquiring for or through the federal government) and shall supersede any
conflicting contractual terms or conditions. If this License fails to meet the government's needs or is incon-
sistent in any respect with federal procurement law, the government agrees to return the Program and Docu-
mentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

June 2004 First printing New for Version 1.0 (Release 14)
October 2004 Online only Revised for Version 1.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.1.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.1.2 (Release 14SP3)

Contents
1
Getting Started

What Is Simulink Parameter Estimation? 1-2

What You Need to Get Started . 1-3
Installation . 1-3
Prerequisite Software and Optional Software 1-3
Required Knowledge . 1-3
Demos . 1-3

How Simulink Parameter Estimation Works 1-5
Basic Steps in the Estimation Process . 1-5
Structure of an Estimation Project . 1-5

Setting Up the Estimation Data . 1-7
Importing Transient Data . 1-9
Specifying Initial Conditions . 1-13
Selecting Parameters for Estimation . 1-15
Selecting States for Estimation . 1-16
Initial Guesses and Upper/Lower Bounds 1-18

Setting Up an Estimation Project . 1-20
Adding Data Sets . 1-21
Specifying and Setting Up Parameters 1-22
Opening the Estimation Window . 1-24

Selecting Views for Plotting . 1-26

Running the Estimation . 1-28
v

vi Contents
Model Validation . 1-31
Example: Validating the Engine Idle Speed Model 1-32
Loading and Importing the Validation Data 1-33
Adding the Validation Task . 1-35
Running the Validation . 1-37
Residuals . 1-39

Setting Options for Optimization . 1-41
Selecting Optimization Methods . 1-41
Selecting Optimization Termination Options 1-42
Selecting Additional Optimization Options 1-43
Specifying the Cost Function . 1-44

Setting Options for the Simulation . 1-45
Selecting Simulation Time . 1-45
Selecting Solvers . 1-46

Estimating Independent Parameters 1-48

2
Estimating Initial Conditions

Why Estimate Initial Conditions? . 2-2

Example: Mass-Spring-Damper System 2-3
Model Parameters . 2-4
Setting Up the Estimation Project . 2-5
Importing Transient Data and
Selecting Parameters for Estimation . 2-5
Selecting Parameters and Initial Conditions for Estimation . . 2-7
Creating the Estimation Task . 2-8
Running the Estimation and Viewing Results 2-9

3
Preprocessing Data

Why Preprocess Data? . 3-2

The Data Preprocessing Tool . 3-3

Excluding Data . 3-5
Selecting Data for Exclusion from the Data Editing Table 3-5
Selection Data for Exclusion from a Plot of the Data 3-8
Selecting Data for Exclusion by a Rule 3-10

Detrending and Filtering . 3-13

Miscellaneous Data Handling . 3-15
Handling Missing Data . 3-15
Loading Data and Saving Modified Data Sets 3-15

4
Managing Multiple Projects

Multiple Projects and Tasks . 4-2

Saving Control and Estimation Tools Manager Projects . . 4-3

Opening Control and Estimation Tools Manager Projects . 4-4

5
Adaptive Lookup Tables

What Are Lookup Tables? . 5-2

How Adaptive Lookup Tables Work . 5-3
vii

viii Contents
Implementation of Adaptive Lookup Tables 5-4
Adaptive Lookup Table Library . 5-5
Using Adaptive Lookup Tables in Simulink Models 5-6
Real-Time Lookup Tables . 5-6
Setting Adaptive Lookup Table Parameters 5-7

Example: n-D Adaptive Lookup Table 5-8
Running the Example . 5-9

6
Estimating from the Command Line

Introduction . 6-2

Example: Estimating Parameters
and Initial Conditions of the F14 Model 6-4

Baseline Simulation . 6-5
Creating a Transient Experiment Object 6-6
Assigning Experimental Data
to Inputs and Outputs of the Model . 6-7
Creating Parameter Objects for Estimation 6-7
Creating an Estimation Object
and Running the Estimation . 6-9

Creating and Customizing Estimation Projects 6-12

Creating Transient Data Objects . 6-13
Properties of Transient Data Objects . 6-13
Modifying Transient Data Object Properties 6-16
Using Class Methods . 6-16

Creating State Data Objects . 6-17
Properties of the State Data Object . 6-17
Example: Initial Condition Data . 6-19
Modifying Properties . 6-19
Using Class Methods . 6-19

Creating Transient Experiment Objects 6-20
Properties of Transient Experiment Objects 6-20
Example: Creating an F14 Experiment 6-20
Example: Creating a Van der Pol Experiment
from User Objects . 6-21
Modifying Properties . 6-21
Using Class Methods . 6-22

Creating Parameter Objects . 6-23
Constructor . 6-23
Properties of Parameter Objects . 6-23
Example: F14 Model . 6-25
Example: Gain Matrix . 6-25
Modifying Properties . 6-25
Using Class Methods . 6-26

Creating State Objects . 6-27
Constructor . 6-27
Properties of State Objects . 6-27
Example: F14 Model . 6-29
Modifying Properties . 6-29
Using Class Methods . 6-29

Creating Estimation Objects . 6-31
Constructor . 6-31
Properties of Estimation Objects . 6-31
Example: F14 Model . 6-32
Modifying Properties . 6-33
Using Class Methods . 6-33
ix

x Contents
7
Block Reference

8
Function Reference

Index

1

Getting Started

What Is Simulink Parameter
Estimation? (p. 1-2)

A brief description of the product

What You Need to Get Started (p. 1-3) Requirements and options for getting started with
Simulink Parameter Estimation

How Simulink Parameter Estimation
Works (p. 1-5)

How Simulink Parameter Estimation handles the
estimation problem

Setting Up the Estimation Data (p. 1-7) How to set up basic estimation information, including
importing empirical data, choosing parameters for
estimation, and so on

Setting Up an Estimation Project
(p. 1-20)

Steps involved in creating the estimation project, which
includes the data and the tasks you want to perform on
the data

Selecting Views for Plotting (p. 1-26) Plotting estimation project data

Running the Estimation (p. 1-28) How to run the estimation and see the resulting data

Model Validation (p. 1-31) How to compare your model’s output with validation data

Setting Options for Optimization
(p. 1-41)

Fine tuning the optimization process for your estimation

Setting Options for the Simulation
(p. 1-45)

How to select simulation time and solvers for your
Simulink model to use while estimation occurs

Estimating Independent Parameters
(p. 1-48)

How to estimate parameters that are not explicitly
defined in your model

1 Getting Started

1-2
What Is Simulink Parameter Estimation?
Simulink® Parameter Estimation is a Simulink-based product for estimating
and calibrating model parameters from experimental data. This product
supports

• Transient Estimation — Estimate parameters by comparing model output to
the experimental data for a given input

• Initial Condition Estimation — Estimate the initial conditions of states
using experimental data

• Adaptive Lookup Tables — Estimate the table values at the prescribed
breakpoints by using measurements from the physical system

Simulink Parameter Estimation provides the tools used to

1 Set up the problem

2 Specify which model parameters to estimate

3 Import and prepare the experimental data for parameter estimation (or
preprocess).

4 View the estimation progress

5 Validate the estimation results based on plots of measured vs. simulated
data and residuals

What You Need to Get Started
What You Need to Get Started

Installation
Instructions for installing Simulink Parameter Estimation are provided in the
MATLAB® installation documentation for your platform.

Simulink Parameter Estimation might be already installed on your system. To
verify an existing installation, check that the slestim subdirectory exists
inside the main matlab directory.

Prerequisite Software and Optional Software
Simulink Parameter Estimation requires MATLAB, Simulink, and the
Optimization Toolbox.

The MathWorks provides several products that are relevant to the kinds of
task you can perform with Simulink Parameter Estimation. For more
information about any of these products, see the

• MathWorks Web site, at
http://www.mathworks.com/products/simparameter/related.jsp

• Online documentation for related products, if they are installed on your
system

Required Knowledge
It is not necessary that you have a strong background in optimization theory or
practice. As you gain familiarity with Simulink Parameter Estimation, you
might find it helpful to consult the Optimization Toolbox documentation for
more details about optimization algorithms.

Demos
Simulink Parameter Estimation provides demonstration files that show you
how to use the blockset to perform control design tasks in various settings. To
run these demos, type

demo

at the MATLAB prompt. This opens the Demos pane in the Help browser.
Select Simulink->Simulink Parameter Estimation to see a list of available
1-3

1 Getting Started

1-4
demos. Alternatively, if you have the Help browser open, you can select the
Demos pane in the Help browser and then choose Simulink->Simulink
Parameter Estimation.

How Simulink Parameter Estimation Works
How Simulink Parameter Estimation Works
Simulink Parameter Estimation compares empirical data with data generated
by a Simulink model. Using optimization techniques, Simulink Parameter
Estimation estimates the parameter and (optionally) initial conditions of states
such that a user-selected cost function is minimized. The cost function typically
calculates a least-square error between the empirical and model data signals.

Basic Steps in the Estimation Process
Once you have built a Simulink model, use the following steps to configure and
run a parameter estimation:

1 Select Tools -> Parameter Estimation from your Simulink model.

This opens the Control and Estimation Tools Manager, creates a new
project, and adds an Estimation task to the project.

2 Import the input and output data set from your Simulink model.

3 Select the parameters and initial conditions you want to estimate.

4 Configure the estimation itself, including cost functions, and data views.

5 Run the estimation.

6 Check the results by examining either the cost-function values, plots, or
parameter values.

Structure of an Estimation Project
The Control and Estimation Tools Manager — a graphical user interface (GUI)
for performing parameter estimation — stores and organizes all data from a
given Simulink model inside a project. See “Control and Estimation Tools
Manager GUI” on page 1-8 for a picture showing the Control and Estimation
Tools Manager GUI.
1-5

1 Getting Started

1-6
Each estimation tasks can include

• One or more data sets

• Parameter information

• One or more sets of estimation settings, or configurations

The default project name is the same as the Simulink model name. The project
name is shown in the workspace directory tree of the Control and Estimation
Tools Manager.

If you have Simulink Control Design or the Model Predictive Control Toolbox,
you can add other types of tasks from these products to the current project. See
the related product documentation for more information.

Setting Up the Estimation Data
Setting Up the Estimation Data
Before beginning the estimation process, you must set up the problem by
configuring the appropriate parameters, solvers, and cost functions. Simulink
Parameter Estimation provides a graphical user interface (GUI) that makes
this setup process quick and easy. This section describes how to use this GUI
to do a complete setup.

To follow along with the setup steps, open the nonlinear idle-speed model of an
automotive engine by typing at the MATLAB prompt

engine_idle_speed

The model appears as shown below.
1-7

1 Getting Started

1-8
Open the Control and Estimation Tools Manager graphical user interface
(GUI) by selecting Tools->Parameter Estimation from the Simulink model
window.

Control and Estimation Tools Manager GUI

When using the Simulink Control and Estimation Tools Manager for
parameter estimation, you can

• Manage estimation projects

• Select parameters and initial conditions to configure the estimation

• Specify cost functions

The workspace
directory tree displays
the name of your
project and manages
all estimation tasks.
Right-click any node
to add, delete, or
rename the associated
project or task.

Setting Up the Estimation Data
• Import experimental data (to be matched by the output of your Simulink
model)

• Specify the initial initial conditions of your model

Importing Transient Data
To import measured data for your dynamic system

1 In the Control and Estimation Tools Manager, select Transient Data under
the Estimation Task.

2 Right-click Transient Data and select New to create a new data set. The
idle-speed model of an automotive engine contains measured data stored in
the iodata array.
1-9

1 Getting Started

1-1
3 Click the New Data node in the tree.

Import Data into the Control and Estimation Tools Manager

To import the model input data

1 Select the Input Data tab.
0

Setting Up the Estimation Data
2 In the Control and Estimation Tools Manager, right-lick the first Data cell
in the Input Data tab and select Import from the shortcut menu. This opens
the Data Import dialog.

Use the Data Import Dialog to Select Your Data

3 Select iodata from the list of variable names. The iodata array contains two
columns: the first for model input data, and the second for model output
data.

4 Enter 1 in the Assign columns field.

5 In the Data Import dialog, click Import.

Note To import the time vector, select the Time/Ts cell in the Input Data
table and follow the same procedure — but select the time variable in the
Data Import dialog instead.

To import the model output data

1 Select the Output Data tab.

By default, the Data Import dialog looks at all variables in
the MATLAB workspace. You can also specify to import from
a MAT-file, Microsoft Excel (XLS) file, CSV file, or ASCII flat
file.

List of available data.

When working with multicolumn data, select one or more
columns to import.

If your array is transposed, that is, if the data is organized
by rows instead of columns, specify row numbers here.
1-11

1 Getting Started

1-1
2 In the Control and Estimation Tools Manager, right-click the first Data cell
in the Output Data table and select Import from the shortcut menu. This
opens the Data Import dialog.

3 Select iodata from the list of variables.

4 Enter 2 in the Assign columns field to use the second column of iodata.

5 In the Data Import dialog, click Import.

Note To import the time vector for output data, select the Time/Ts cell in the
Input Data table and follow the same procedure — but select the time
variable in the Data Import dialog instead. Enter 1 in the Assign columns
field.

6 Click Close to close the Data Import dialog.
2

Setting Up the Estimation Data
Specifying Initial Conditions
By default, the estimation uses initial conditions specified in the Simulink
model. If you want to specify different initial conditions, use the State Data
panel. You can open it by selecting Transient Data->New Data in the
workspace directory tree, and then clicking the State Data tab.
1-13

1 Getting Started

1-1
To specify an initial condition for a state:

1 Select the Data cell associated with the state.

2 Enter the initial condition. In this example, enter -0.2 for State - 1 of the
engine_idle_speed/Transfer Fcn. For State - 2, enter 0.
4

Setting Up the Estimation Data
Selecting Parameters for Estimation
To select parameters for estimation

1 In the Control and Estimation Tools Manager, select the Variables node in
the workspace directory tree. This opens the Estimated Parameters pane.

2 In the Estimated Parameters pane, click Add to open the Select Parameters
dialog.

Select Parameters Dialog

For this example, select the last seven parameters: freq1, freq2, freq3, gain1,
gain2, gain3, and mean_speed and click OK.

In general, you can enter parameters stored in one of the following by entering
information into the Specify expression field (separated by commas)

• Simulink parameter object

Example: For a Simulink parameter object k, type k.value

• Structure

Example: For a structure S, type S.fieldname (where fieldname represents
the name of the field that contains the parameter)

By default, the Select Parameters dialog box looks at
all variables in the model workspace and the MATLAB
workspace that are used by the model.

List of parameters

Use your mouse to select data. To select adjacent
parameters, hold down the Shift key while clicking the
first and last parameter in the selection. To select
nonadjacent parameters, hold down the Ctrl key while
clicking each parameter.

Use the text field to get the parameters contained in
either a Simulink parameter object, MATLAB array,
structure, or cell array. Note that you cannot use
mathematical expressions such as x + 5.
1-15

1 Getting Started

1-1
• Cell array

Example: Type C{1} to select the first element of the C cell array.

• MATLAB array

Example: Type a(1:2) to select the first column of a 2x2 array called a.

Note You do not have to estimate the parameters selected here all at once.
You can first select all the parameters that you are interested in, then later
decide which ones to estimate in a particular estimation.

Often, it is more practical to estimate a small group of parameters and use the
final estimated values as a starting point for further estimation of parameters
that are more tricky. Making these sorts of choices involves experience,
intuition, and a solid understanding of the strengths and limitations of your
Simulink model.

Sometimes models have parameters that are not explicitly defined in the model
itself. For example, a gain k could be defined in the MATLAB workspace as
k=a+b, where a and b are not defined in the model but k is used. To add these
independent parameters to the Select Parameters dialog, see “Estimating
Independent Parameters” on page 1-48.

Selecting States for Estimation
To estimate initial conditions (or initial states) if they are not known,

1 In the Control and Estimation Tools Manager, select the Variables node in
the workspace directory tree.

2 Select the Estimated States tab.
6

Setting Up the Estimation Data
3 In the Estimated States pane, click Add. This opens the Select States
dialog.

Select States Dialog

For this example, do not select any states to estimate.

In general, you only choose to estimate those states that you do not already
have in the model.

By default, the Select States dialog box looks at all
states of all blocks in the model.

List of states

Use your mouse to select data. To select adjacent states,
hold down the Shift key while clicking the first and last
state in the selection. To select nonadjacent states, hold
down the Ctrl key while clicking each state.
1-17

1 Getting Started

1-1
Initial Guesses and Upper/Lower Bounds
Once you have selected parameters for estimation, the Control and Estimation
Tools Manager looks like the following figure.

For each parameter, use the Default settings panel to specify the following:

• Initial guess — The value the estimation uses to start the process.

• Minimum — The smallest allowable parameter value. The default is -Inf.

• Maximum — The largest allowable parameter value. The default is +Inf.

• Typical value — The average order of magnitude. If you expect your
parameter to vary over several orders of magnitude, enter the number that
specified the average order of magnitude you expect. For example, if your
8

Setting Up the Estimation Data
initial guess is 10, but you expect the parameter to vary between 10 and
1000, enter 100 (the average of the order of magnitudes) for the typical value.

The Typical Value has two functions:

• Use a larger value to put more emphasis on a parameter during estimation.

• Try to select the typical values so that

or

Either case places equal emphasis on all parameters.

anticipated value
typical value

--- 1≅

initial value
typical value
--------------------------------------- 1≅
1-19

1 Getting Started

1-2
Setting Up an Estimation Project
After you import the transient data imported and the select the parameters
and any initial conditions (or states) to estimate, you are ready to configure the
estimation settings.

To create a container that stores the estimation settings

1 In the Control and Estimation Tools Manager, right-click Estimation in the
workspace directory tree and select New.

2 Click the New Estimation node.
0

Setting Up an Estimation Project
Adding Data Sets
For the New Estimation, select the Data Sets pane and choose the output data
from the Simulink model that you want to use in the estimation.

In this example, select the check box to the right of New Data in the Data Sets
pane.

Note If you imported multiple data sets, you can select them for estimation
by selecting the check box to the right of each desired data set. When using
several data sets, you increase the estimation precision. However, you also
increase the number of required simulations: for N parameters and M data
sets, there are M*(2N+1) simulations per iteration.
1-21

1 Getting Started

1-2
Then, specify the weight of each output from this model by setting the Weight
column in the Output Data Weights table.

The relative weights are used to place more or less emphasis on specific output
variables. The following are a few guidelines for specifying weights:

• Use less weight when an output is noisy.

• Use more weight when an output strongly affects parameters.

• Use more weight when it is more important to accurately match this model
output to the data.

Specifying and Setting Up Parameters
For the New Estimation, select the Parameters pane for your new estimation
in the Control and Estimation Tools Manager to select which parameters to
estimate and the range of values for the estimation.

Note Setting min, max, and so on values here does not affect the settings you
had in the Variables node. You make these choices on a per estimation basis.
Using the buttons in this panel, however, you can move data to and from the
Variables node.
2

Setting Up an Estimation Project

Select the parameters you want to estimate in the Estimate column. Enter
initial values for your estimation parameters in the Initial Guess column. The
default values in the Minimum and Maximum columns are -Inf and +Inf,
respectively, but you can select any range you want. If you have good reason to
believe a parameter lies within a finite range, it is usually best not to use the
default minimum and maximum values. Often, there is computational
advantage in specifying finite bounds if you can.

It can be very important to specify lower and upper bounds. For example, if a
parameter specifies the weight of a part, be sure to specify 0 as the absolute
lower bound if better knowledge is unavailable.
1-23

1 Getting Started

1-2
For this example, set gain1 to 10, gain2 to 100, gain3 to 50, and mean_speed
to 500. Or, use any initial values you like.

Opening the Estimation Window
Select the Estimation tab to open the Estimation pane for your new
estimation.

Before you start, you can click Estimation Options to specify various
algorithm and simulation features. See “Selecting Optimization Methods” on
page 1-41 for more information.
4

Setting Up an Estimation Project
Display Options
Clicking Display Options opens this dialog box.

Unchecking a box means that data will not show up in the display table for the
estimation.

By default, all boxes are checked. Uncheck any
feature that you don’t want to view during the
estimation process.
1-25

1 Getting Started

1-2
Selecting Views for Plotting
You can watch the minimization process occur by right-clicking on Views in the
workspace directory tree of the Control and Estimation Tools Manager and
then selecting Add. In the workspace directory tree, select New View. This
opens the View Setup panel.

Select the desired plot type by clicking on the first cell under the Plot Type
column in the Select Plot Types table. Various types of plots are available,
including

• Cost function — Plot the cost function values.

• Measured and simulated — Plot the empirical data against the simulated
data.
6

Selecting Views for Plotting
• Parameter sensitivity — Plot the rate of change of the cost function as a
function of the change in the parameter. That is, plot the derivative of the
cost function with respect to the parameter being varied.

• Parameter trajectory — Plot the parameter values as they change.

• Residuals — Plot the error between the experimental data and the
simulated output.

For this example, select Cost function. Check Plot 1 in the Options table, and
then click Show Plots. This opens a plot window for the cost function. When
you run your estimation, the plot updates automatically.

This figure shows the plot.

Note An estimation must be created prior to creating views. Otherwise, the
Options table will be empty.
1-27

1 Getting Started

1-2
Running the Estimation
In the Control and Estimation Tools Manager, select the Estimation panel for
your New Estimation and click Start to begin the estimation process. At the
end of the iterations, the window should look something like this.

Usually, a lower cost function value indicates a successful estimation, meaning
that the experimental data matches the model simulation with the estimated
parameters.
8

Running the Estimation
The Estimation panel displays each iteration of the optimization algorithm. To
see the final values for the parameters, go to the Parameters panel.

The values of these parameters are also updated in the MATLAB workspace.
So, if you specify the variable name in the Initial Guess column, you can
restart the estimation from where you left off at the end of a previous
estimation.
1-29

1 Getting Started

1-3
The cost function minimization is plotted below.

If the optimization went well, you should see your cost function converge on a
minimum value. The lower the cost, the more successful the estimation is.
0

Model Validation
Model Validation
Once you’ve completed an estimation, you can validate your results against
another set of data.

These are the basic steps needed to validate a model using the Control and
Estimation Tools Manager:

1 Add the validation data to the Transient Data sets.

2 Add a new validation in the Validation node of the workspace directory tree.

3 Edit the validation—select plot types you want from the Validation Setup
panel and select the validation data set you want to use.

4 Click Show Plots in the Validation Setup panel and view the results in the
plot window.

5 Compare the validation plots to corresponding view plots to see if the match
is close.

The basic difference between the validation and views features is that you can
run validations after your estimation is complete. All views should be set up
prior to an estimation, and you can watch the views update in real time.
Validations can use other validation data sets for comparison with the model
response. Also, validations appear after you have completed an estimation and
do not update.

You can validate your data by comparing measured vs. simulated data for your
estimation data and validation data sets. Also, it is often useful to compare
residuals in the same way.
1-31

1 Getting Started

1-3
Example: Validating the Engine Idle Speed Model
If you haven’t run the engine idle speed demo, type

engine_idle_speed

at the MATLAB prompt and run the estimation. If you haven’t run an
estimation yet, see “How Simulink Parameter Estimation Works” on page 1-5.
To save time, double-click on the box in the upper-left corner of the model to
import data and populate the required fields in the Control and Estimation
Tools Manager.

The engine_idle_speed Simulink Model

Now that the estimation data is loaded, and the estimation task has been
created, the next step is to import validation data into the Control and
Estimation Tools Manager.
2

Model Validation
Loading and Importing the Validation Data
To load the validation data, enter

load iodataval

at the MATLAB prompt. This loads the data into the MATLAB workspace. The
next step is to import this data into the tools manager. See “Importing
Transient Data” on page 1-9 for information on importing data, but the
quickest way is to follow these steps:

1 Right-click on the Transient Data node of the workspace directory tree of
the Control and Estimation Tools Manager and select Add.

2 Select New Data 2 from the Transient data sets panel and click Edit.

3 Select the New Data (2) node from the workspace directory tree of the
Control and Estimation Tools Manager. Right-click and select Rename.
Change the name of the data to Validation Data. (You can also change the
name by double-clicking on New Data (2) in the Transient data sets panel
and selecting Rename.)

4 On the Input Data panel, select the Data cell associated with Channel - 1
and click Import. In the Data Import dialog box, select iodataval and
assign column 1 to the selected channel by entering 1 in the Assign columns
field. Click Import to import the data.

Enter 1 in the Assign columns field
to import the first (input) column of
data in the iodataval array.
1-33

1 Getting Started

1-3
5 Select the Time/Ts cell and import time using the Data Import dialog box.

6 Similarly, on the Output Data panel, select Time/Ts and import time.

7 On the Output Data panel, select the Data cell associated with Channel - 1
and click Import. Import the second column of data in iodataval by
selecting it from the list in the Import Data dialog box and entering 2 in the
Assign columns field. Click Import to import the data.

Your Control and Estimation Tools Manager should look like this figure.
4

Model Validation
Adding the Validation Task
Once you’ve imported the data, right-click on the Validation node and select
Add. This opens the Validations panel in the Control and Estimation Tools
Manager.
1-35

1 Getting Started

1-3
Click on New Validation in the workspace directory tree to open the
Validation Setup panel.

Click on the Plot Type
cell associated with
Plot 1 to open the
Plot Type menu.
Choose the plot type
from this menu.

Choose the data you
want to use for
validation from the
Validation data set
pull down menu.

Check the box to add
the data to the plot.
6

Model Validation
Running the Validation
For plot 1, select Measured and simulated from the Plot Type menu, and
choose Validation Data from the Validation data set menu. Click Show
Plots. This opens a plot figure window as shown below.

Measured (Validation) vs. Simulated Data Plot
1-37

1 Getting Started

1-3
Compare this with the plot of measured and simulated data from the Views
node of the workspace directory tree.

Measured and Simulated Data Views Plot

Since the validation data is entered as a Transient Data set, it shows up in the
right side plot as measured data. The left-hand plot, however, is the measured
and simulated data that you should compare to the measured and simulated
data plot that used the validation data.
8

Model Validation
Residuals
To look at the residuals in Plot 2, select Residual from the Plot 2 menu. This
figure shows the resulting plot.

Plot of Residuals Using the Validation Data
1-39

1 Getting Started

1-4
Compare the validation data residuals to the original data set residuals from
the Views node of the workspace directory tree.

Plot of Residuals Using the Test Data

The left side plot agrees closely with the residual data for the validation data.
The right side plot is empty since no residuals were calculated for the
validation data during the original estimation process.
0

Setting Options for Optimization
Setting Options for Optimization
Several options can be set to tune the results of the optimization. These options
include the optimization algorithms and the tolerances the algorithms use. To
set options for optimization, click Estimation Options in the Estimation panel
of the Control and Estimation Tools Manager. This opens the Options dialog
box.

Selecting Optimization Methods
Both the algorithm and model size define the optimization method. Use the
Optimization Method panel in the Options dialog box to set algorithm and
the model size.

For the Algorithm parameter, the four options are

• Gradient descent — Uses the Optimization Toolbox function fmincon to
optimize the response signal subject to the constraints
1-41

1 Getting Started

1-4
• Nonlinear least squares — Uses a nonlinear least squares optimization
algorithm.

• Pattern search — Uses an advanced pattern search algorithm. This option
requires the Genetic Algorithm and Direct Search Toolbox.

• Simplex search — Uses the Optimization Toolbox function fminsearch — a
direct search method to optimize the response. Simplex search is most
useful for simple problems and is sometimes faster than Function
minimization for models that contain discontinuities.

By default, the Model Size parameter is set to Large scale. When the number
of parameters you want to estimate is large, Model Size should use the default
to increase computation speed. If your model is not very large, it may be more
efficient to select Medium scale. See the Optimization Toolbox documentation
for more information about the optimization methods.

Selecting Optimization Termination Options
Use the Optimization Options panel to specify termination options.

Several options define when the optimization terminates:

• Diff max change — The maximum allowable change in variables for
finite-difference derivatives. See fmincon in the Optimization Toolbox
documentation for details.

• Diff min change — The minimum allowable change in variables for
finite-difference derivatives. See fmincon in the Optimization Toolbox
documentation for details.

• Parameter tolerance — Optimization terminates when successive
parameter values change by less than this number.

• Maximum fun evals — The maximum number of cost function evaluations
allowed. The optimization terminates when the number of function
evaluations exceeds this value.
2

Setting Options for Optimization
• Maximum iterations — The maximum number of iterations allowed. The
optimization terminates when the number of iterations exceeds this value.

• Function tolerance — The optimization terminates when successive
function values are less than this value.

By varying these parameters, you can force the optimization to continue
searching for a solution or to continue searching for a more accurate solution.

Selecting Additional Optimization Options
At the bottom of the Optimization Options panel is a group of additional
optimization options.

Additional options for optimization include

• Display level — This option specifies the form of the output that appears in
the MATLAB command window. The options are Iteration, which displays
information after each iteration, None, which turns off all output, Notify,
which displays output only if the function does not converge, and Final,
which only displays the final output. Refer to the Optimization Toolbox
documentation for more information on what type of iterative output each
algorithm displays.

• Gradient type — When using Gradient Descent or Nonlinear least
squares as the Algorithm, Simulink Parameter Estimation calculates
gradients based on finite difference methods. The Refined method offers a
more robust and less noisy gradient calculation method than Basic,
although it does take longer to run optimizations using the Refined method.
1-43

1 Getting Started

1-4
Specifying the Cost Function
The cost function is a function that optimization algorithms attempt to
minimize. You have the following options when selecting a cost function:

• Cost function — The default is SSE (sum of squared errors), which uses a
least-squares approach. You can also use SAE, the sum of absolute errors.

• Use robust cost — Makes the optimizer use a robust cost function instead of
the default least-squares cost. This is useful if the experimental data has
many outliers, or if your data is noisy.
4

Setting Options for the Simulation
Setting Options for the Simulation
To optimize the response signals of a model, Simulink Parameter Estimation
runs simulations of the model. You can set options for these simulations by
clicking Estimation Options in the Estimation panel of the Control and
Estimation Tools Manager. This opens the Options dialog box.

Selecting Simulation Time

By default, the Start time and Stop time are automatically computed based on
the start and stop times specified in the Simulink model. To set alternative
start and stop times for the optimization, enter them under Simulation Time.
1-45

1 Getting Started

1-4
Selecting Solvers

When running the simulation, Simulink solves the dynamic system using one
of several solvers. You can specify several solver options using the Solver
Options panel in the Options dialog box. The type of solver can be variable-step
or fixed-step. Variable-step solvers keep the error within specified tolerances by
adjusting the step-size the solver uses. Fixed-step solvers use a constant
step-size. When your model’s states are likely to vary rapidly, a variable-step
solver is often faster.

Variable-Step Solvers
When you select Variable-step as the solver Type, you can choose any of the
following as the Solver:

• discrete (no continuous states)
• ode45 (Dormand-Prince)
• ode23 (Bogacki-Shampine)
• ode113 (Adams)
• ode15s (stiff/NDF)
• ode23s (stiff/Mod. Rosenbrock)
• ode23t (Mod. stiff/Trapezoidal)
• ode23tb (stiff/TR-BDF2)

See the Simulink documentation for information on these solvers.

Variable-Step Solver Options
When you select Variable-step as the solver Type, you can also set several
other parameters that affect the step-size of the simulation:

• Maximum step size — The largest step-size Simulink can use during a
simulation
6

Setting Options for the Simulation
• Minimum step size — The smallest step-size Simulink can use during a
simulation

• Initial step size — The step-size Simulink uses to begin the simulation

• Relative tolerance — The largest allowable relative error at any step in the
simulation

• Absolute tolerance — The largest allowable absolute error at any step in
the simulation

• Zero crossing control — Set to on for the solver to compute exactly where
the signal crosses the x-axis. This is useful when using functions that are
nonsmooth and the output depends on when a signal crosses the x-axis, such
as absolute values.

By default, Simulink automatically chooses values for these options. To choose
your own values, enter them in the appropriate fields. For more information on
these options, and the circumstances in which to use them, see the Simulink
documentation.

Fixed-Step Solvers
When you select Fixed-step as the solver Type, you can choose any of the
following as the Solver:

• discrete (no continuous states)
• ode5 (Dormand-Prince)
• ode4 (Runge-Kutta)
• ode3 (Bogacki-Shanpine)
• ode2 (Heun)
• ode1 (Euler)

See the Simulink documentation for information on these solvers.

When you select Fixed-step as the solver Type, you can also set Fixed step
size, which determines the step-size the solver uses during the simulation. By
default, Simulink automatically chooses a value for this option.
1-47

1 Getting Started

1-4
Estimating Independent Parameters
Sometimes parameters in your model depend on independent parameters that
do not appear in the model. The following steps give an overview of how to use
Simulink Parameter Estimation to estimate independent parameters:

1 Add the independent parameters to the model workspace (along with initial
values).

2 Define a Simulation Start function that runs before each simulation of the
model. This Simulation Start function defines the relationship between the
dependent parameters in the model and the independent parameters in the
model workspace.

3 The independent parameters now appear in the Add Parameters dialog box.
Add these parameters to the list of parameters to be estimated.

Caution Avoid adding independent parameters together with their
corresponding dependent parameters to the lists of parameters to be
estimated. Otherwise the estimation could give incorrect results. For example,
when a parameter x depends on the parameters a and b, avoid adding all
three parameters to the list.

Example:
Assume that the parameter Kint in the model srotut1 is related to the
parameters x and y according to the relationship Kint=x+y. Also assume that
the initial values of x and y are 1 and -0.7 respectively. To estimate x and y
instead of Kint, first define these parameters in the model workspace. To do
this

1 Select View -> Model Explorer from the srotut1 window.

2 Select Model Workspace under the srotut1 node in the tree browser within
the Model Explorer window.
8

Estimating Independent Parameters
3 Select Add -> MATLAB Variable within the Model Explorer to add a new
variable to the model workspace. A new variable appears within the pane
labeled Contents of: Model Workspace. Change the variable name to x and
the initial value to 1.

4 Repeat step 3 to add a variable y with an initial value of -0.7. The Model
Explorer window should now look like the following figure.
1-49

1 Getting Started

1-5
5 To add the Simulation Start function defining the relationship between Kint
and the independent parameters x and y, select File -> Model Properties in
the srotut1 window, the select Callbacks in the Model Properties window.

6 Under Simulation start function, enter the name of a new M-file, for
example, srotut1_start.

7 Create a new M-file with this name. The contents of the M-file should define
the relationship between the parameters in the model and the parameters
in the workspace. For this example, the M-file should look something like
the following.
0

Estimating Independent Parameters
wks = get_param(gcs, 'ModelWorkspace')
x = wks.evalin('x')
y = wks.evalin('y')
Kint = x+y;

Note You must first use the get_param function to get the variables x and y
from the model workspace before you can use them to define Kint.

8 When you add a parameter to be estimated, x and y should now appear in
the Add Parameters dialog box.
1-51

1 Getting Started

1-5
2

2

Estimating Initial
Conditions

Why Estimate Initial Conditions?
(p. 2-2)

Reasons for estimating initial conditions of states in your
model

Example: Mass-Spring-Damper
System (p. 2-3)

An example that takes you step-by-step through an
estimation of the initial position of a mass attached to a
spring

2 Estimating Initial Conditions

2-2
Why Estimate Initial Conditions?
Often, sets of measured data are collected at various times and under different
initial conditions. If you estimate parameters for your Simulink model using
one set, then try again with another, your parameter values may not match.
Given that Simulink Parameter Estimation attempts to find constant values
for parameters, this is clearly a problem.

Fortunately, Simulink Parameter Estimation has features that make this task
simpler. The Control and Estimation Tools Manager has an Estimated States
panel that lists the states available for initial condition estimation. So, you can
estimate initial conditions using procedures that are similar to those you use
to estimate parameters. You can then use these initial condition estimates as
a basis for estimating parameters for your Simulink model.

The following sections discuss the steps required to estimate initial conditions,
and then estimate parameters given the initial condition estimates.

Example: Mass-Spring-Damper System
Example: Mass-Spring-Damper System
The figure below is a Simulink model of a mass-spring-damper system.

This model is available as a demo for Simulink Parameter Estimation, but this
section discusses each step of the task in more depth. If you want to run the
demo, see the listings under Simulink for Simulink Parameter Estimation
on the Demo page of the Help browser.

To open the model and two sets of model data with differing initial conditions,
type

msd_system

at the MATLAB prompt.
2-3

2 Estimating Initial Conditions

2-4
Model Parameters
The Simulink msd_system model’s output is the displacement (or position) of
the mass in a mass-spring-damper system, subject to a constant force F, and an
initial condition, x0, for the mass displacement. x0 is indicated by the initial
condition of the Position integrator block. Click the Start button to run the
simulation once and observe the response of the model to two sets of parameter
values.

The model parameters of interest are the mass, m, the viscous damping, b, and
the spring constant, k. For more information about physical modeling of
mass-spring-damper systems, see any elementary book on mathematical
modeling or on automatic control systems.

For the estimation of the model parameters m, b, and k, this model uses two sets
of experimental data. These data sets were obtained using two different initial
positions, x0=0.1 and x0=0.3, and also contain additive noise. A plot of these
data sets is shown in the figure above (top curves), along with the simulated
response (bottom curve) of the Simulink model msd_system for x0=-0.1 and a
nominal set of parameter values, m=8, k=500, and b=100.

These magenta and cyan curves are empirical
responses for data with different initial
conditions.

This yellow curve is the response of the model
to a constant force.

Example: Mass-Spring-Damper System
Setting Up the Estimation Project
To set up the estimation of initial conditions and then transient state space
data, select Parameter Estimation from the Tools menu of the model
msd_system window.

Importing Transient Data and
Selecting Parameters for Estimation
The process for importing transient data and selecting parameters for
estimation is discussed in “Importing Transient Data” on page 1-9 and
“Selecting Parameters for Estimation” on page 1-15. Briefly,

1 Select the Transient Data node from the workspace directory tree of the
Control and Estimation Tools Manager.
2-5

2 Estimating Initial Conditions

2-6
2 Right-click Add to add a new data set.

3 Select the New Data entry in the Transient Data column and click Edit to
open the Input Data, Output Data, and State Data panels.

4 In the Output Data panel, click Import and add yexp1 to the Data column
and texp1 to the Time/Ts column of the msd_system/Position state.

5 If you like, right-click on New Data in the workspace directory tree and
rename it to Data set #1.

6 Follow the same procedure in steps 1 through 4 to add the second data set,
yexp2 and texp2, and rename it to Data set #2.

Your Control and Estimation Tools Manager should look like this.

Example: Mass-Spring-Damper System
Selecting Parameters and Initial Conditions for
Estimation
First, select the parameters you want to estimate for the Simulink msd_system
model. In this case, choose b, k, and m. To do this,

1 Select the Variables node in the workspace directory tree of the Control and
Estimation Tools Manager.

2 Select the Estimation Parameters panel.

3 Click Add and select b, k, and m from the Select Parameters dialog box that
opens.

4 Do the same with the Estimation States panel, and select
msd_system/Position from the Select States dialog box.

Select states with initial
conditions that you want to
estimate.

Hold down Shift and use your
mouse to select groups of
adjacent states. Hold down Ctrl
and use your mouse to select
nonadjacent states.
2-7

2 Estimating Initial Conditions

2-8
Your Control and Estimation Tools Manager should look like this.

Creating the Estimation Task
To create the New Estimation task, right-click the Estimation node and select
Add from the workspace directory tree of the Control and Estimation Tools
Manager. While the initial velocity is also a state of the model, assume (for
simplicity) that it is known to be zero. The estimation task for this case is Estim
(with IC).

In the Data Sets, Parameters, and States panels for the New Estimation
task, check all the boxes you see in each of the tables. Be sure to check Position
for both data sets on the States panel. This directs the estimation project to
estimate the initial condition for the spring’s position.

Example: Mass-Spring-Damper System
The initial position estimates for the two data sets are known to differ, but set
the initial state guesses for both data sets to -0.1.

Running the Estimation and Viewing Results
Click Start in the Estimation panel to run the estimation. As the estimation
proceeds, the most current estimation of position response (yellow curve)
updates itself in the Scope. The curve appears to toggle between the two
experimental data sets, since the estimator uses the two sets successively to
update the estimates of the parameter values. The estimator converges to the
correct parameter values, within the scope of experimental noise and
optimization options settings, as indicated by the closeness of the estimated
response (yellow) to the experimental data (magenta). Good state estimates for
2-9

2 Estimating Initial Conditions

2-1
the initial position are also obtained, as can be observed from the States tab of
Estim(with IC) estimation task.

The estimation of initial states is important for obtaining the correct estimates
of the model parameters. Why not set the initial states (x0 in this case) as
parameters as well? The reason is that the initial states are not fixed physical
properties of the system. For different experimental data or operating
conditions, these states need not be unique. In this example, two data sets,
with distinct initial positions, were used together for a single estimation of
model parameters. While the estimates of the model parameters are unique,
the initial state (position) is different, and is estimated individually for each
data set.

The simulated data is a good match to
the measured (experimental) data.
0

3

Preprocessing Data

Simulink Parameter Estimation provides for detrending, exclusion, and filtering of data.

Why Preprocess Data? (p. 3-2) An introduction to data preprocessing

The Data Preprocessing Tool (p. 3-3) An introduction to a graphical user interface (GUI) for
data preprocessing

Excluding Data (p. 3-5) Various ways to exclude data from your data sets

Detrending and Filtering (p. 3-13) Various ways to detrend and filter your data sets

Miscellaneous Data Handling (p. 3-15) Additional features of the Data Preprocessing Tool

3 Preprocessing Data

3-2
Why Preprocess Data?
When dealing with empirical data, it is often useful to remove outliers, smooth,
detrend, or otherwise treat the data to make it more tractable for analysis and
estimation purposes. Simulink Parameter Estimation provides features that
perform the following tasks:

• Exclusion — Eliminate outliers, represent them as NaNs, or use
interpolation.

• Detrending — Remove mean values or a straight line trend.

• Filter — Smooth data using a first-order filter, an arbitrary transfer
function, or an ideal filter.

Data can overwrite existing data, or be stored in a new file.

The Data Preprocessing Tool
The Data Preprocessing Tool
Simulink Parameter Estimation provides a GUI for data preprocessing, the
Data Preprocessing Tool. To open it, open the Control and Estimation Tools
Manager and select the data you want to modify from the Input Data, Output
Data, or State Data panels from the Transient Data node of the workspace
directory tree. Click Pre-process to open the Data Preprocessing Tool.

For this chapter, the data used is from the engine_idle_speed Simulink
model. See “How Simulink Parameter Estimation Works” on page 1-5 for an
overview of creating estimation projects and adding data sets.

The Data Preprocessing Tool has numerous features. With it you can

• Exclude data by selecting it with your mouse
3-3

3 Preprocessing Data

3-4
• Exclude data graphically by selecting regions on a plot

• Exclude data by rules, such as upper or lower bounds

• Detrend data

• Filter data

Excluding Data
Excluding Data
There are three ways to exclude data, covered in the following sections:

• “Selecting Data for Exclusion from the Data Editing Table” on page 3-5

• “Selection Data for Exclusion from a Plot of the Data” on page 3-8

• “Selecting Data for Exclusion by a Rule” on page 3-10

The first two are by hand, the last by a rule. When you exclude data by hand
(not by a rule), the excluded data is red. When you exclude data by a rule, the
background color of the cell becomes gray. If a piece of data is excluded by both
a rule and by hand, the data (numbers) is red, and the background is gray.

Note Changes in data are visible everywhere. If you use the Data Editing
table, the results are viewable in the plot of the data, and vice versa.

Selecting Data for Exclusion from the Data Editing
Table
The Data Editing table lists both the raw data set and the modified data that
you create.

Use your mouse to select groups of
cells for exclusion. Selected cells
become blue. Right-click and select
Exclude. The background becomes
white, but the numbers are now red.

Click this button to view the data
graphically.
3-5

3 Preprocessing Data

3-6
There are two tables in the Data Editing table, Raw Data and Modified Data.
The Raw Data panel is your working copy. For example, if you exclude rows of
data in the Raw Data table, those rows of numbers become red in that table.
By default the Modified Data table represents the removed rows by inserting
NaNs.

In the Modified Data table, you can choose to remove the excluded data
completely or interpolate it. See “Miscellaneous Data Handling” on page 3-15
for more information.

By default, data that you excluded from the
Raw Data table is represented by NaNs in
the Modified Data table. If you choose to
interpolate or remove missing data, the
results of that action are shown in the
Modified Data table.

Excluding Data
Once you’ve selected data for exclusion, you can view it graphically by clicking
Exclude Graphically.

As you make changes in the Data Editing table, they immediately appear in
the Select Points for Preprocessing Rule window, and vice versa.

The data
excluded by
hand is marked
in red.
3-7

3 Preprocessing Data

3-8
Selection Data for Exclusion from a Plot of the Data
Another way to exclude data is to do so graphically. Click Exclude Graphically
to open the Select Points for Preprocessing Rule window.

You can exclude data in much the same way as you would select a region for
zooming. Place your cursor in the Input Data plot, click and drag the mouse to
draw a region of exclusion.

Excluding Data
This figure shows an example of resulting data exclusion in the input data.

In the Output Data plot, the excluded input data produces a blank area by
default. This corresponds to the NaN representation of excluded data. If you
choose to interpolate or remove the excluded data, the output data shows the
interpolated points.

As you make changes in the Select Points for Preprocessing Rule window,
they immediately appear in the Data Editing table, and vice versa.

The excluded area
is red in the Input
Data plot.

By default, In the
Output Data plot,
the excluded input
data produces a
blank area.
3-9

3 Preprocessing Data

3-1
The Selection Panel
By default, any box that you draw with your mouse selects data for exclusion,
but you can toggle between exclusion and inclusion using the Selection panel
on the left side of the Select Points for Preprocessing Rule window.

Selecting Data for Exclusion by a Rule
A more precise way to exclude data is to use mathematical rules. The
Exclusion Rules panel of Data Preprocessing Tool allows you to enter
customized rules of exclusion.

Use these radio buttons to toggle between
including and excluding selected data.

Use these buttons to include or exclude all
the data.
0

Excluding Data
These are the rules you can use to exclude data:

• Upper and lower bounds

• Outliers

• MATLAB expressions

• Flatlines

Upper and Lower Bounds
Check the Bounds box to activate upper and lower bound exclusion. Enter
numbers in the Exclude X and Exclude Y fields for upper and lower bound
exclusion. By default, the exclusion rule is to include the boundary values, but
you can use the menu to exclude the boundaries as well.

Outliers
Check the Outliers box to activate outlier exclusion. You can set Window
length to any positive integer, and use confidence limits between 0% and 100%.
The window length specifies the number of data points used when calculating
outliers.

MATLAB Expressions
Use the MATLAB expression field to enter any mathematical expression
needed in MATLAB code. Use x as the variable name in your expression for
data being tested.

Flatlines
If you have areas of your data set where the data is constant, providing no new
information, then you can choose to exclude those data points as flatlines. The
Window length field sets the minimum number of constant data points
required to define the area as a flatline.
3-11

3 Preprocessing Data

3-1
Example of Rule Exclusion
This figure shows data with a region of the x-axis excluded.

The region of
data excluded
by rule is shaded
gray.
2

Detrending and Filtering
Detrending and Filtering
You can both detrend and filter data using the Detrend/Filtering panel on the
Data Preprocessing Tool.

Detrending
To detrend, select the Detrending check box. You can choose constant or
straight line detrending. Constant detrending removes the mean of the data to
create zero mean data. Straight line detrending finds linear trends and then
removes them.

Filtering
You have these choices for filtering your data:

• First order — A filter of the type

where is the time constant that you specify in the associated field.

1
τs 1+

τ

3-13

3 Preprocessing Data

3-1
• Transfer function — A filter of the type

where you specify the coefficients as vectors in the associated A and B
coefficients fields.

• Ideal — An idealized (noncausal) filter, either stop or pass band. Specify
either filter as a two-element vector in the Range (Hz) field. These filters are
ideal in the sense that there is no finite rolloff or ripple; the ends of the
ranges are perfectly horizontal in the frequency domain.

ansn an 1– sn 1– … a0+ + +

bmsm bm 1– sm 1– … b0+ + +

4

Miscellaneous Data Handling
Miscellaneous Data Handling
There are a few miscellaneous data handling features in the Data
Preprocessing Tool.

Handling Missing Data
You can use the Missing Data Handling panel at the bottom of the Data
Preprocessing Tool to remove rows of data or interpolate between points to
fill in missing data.

Removing Rows
If you check Remove rows where all/any data is excluded or missing, the
affected rows are removed from the Modified Data table. If you have multiple
columns of data, select all to remove rows in which all the data is excluded.
Select any to remove any excluded cell. In the case of one-column data, any and
all are equivalent.

Interpolation
You have two choices if you want to interpolate data: zero-order hold (zoh) and
linear interpolation (Linear). Check the Interpolate missing values using
interpolation method box and choose which method you want from the menu.
The results appear in the Modified Data table.

Loading Data and Saving Modified Data Sets
At the top of the Data Preprocessing Tool, there is a region for selecting data
sets for preprocessing, and for saving modified data sets.

When you have multiple data sets, select the one you want to preprocess from
the Modify data from menu.
3-15

3 Preprocessing Data

3-1
To overwrite an existing data set, select the existing dataset radio button and
choose the data set you want to overwrite. If you want to save the data set
under a new name, select the new dataset radio button and type the new name
in the associated field.
6

4

Managing Multiple
Projects

Simulink Parameter Estimation works seamlessly with other MathWorks products to perform
multiple tasks on multiple projects.

Multiple Projects and Tasks (p. 4-2) A brief discussion of handling multiple projects with
multiple tasks

Saving Control and Estimation Tools
Manager Projects (p. 4-3)

How to save projects for later

Opening Control and Estimation Tools
Manager Projects (p. 4-4)

How to open existing projects

4 Managing Multiple Projects

4-2
Multiple Projects and Tasks
The Control and Estimation Tools Manager works seamlessly with products in
the Controls and Estimation family. In particular, if you have licenses for
Simulink Control Design or Model Predictive Control, you can use these
products to perform tasks on projects that you have created in Simulink
Parameter Estimation, and vice versa.

This figure shows a tools manager with multiple projects and multiple tasks.

You can save projects individually, or group multiple projects together in one
saved file. The next section describes how to do this.

Saving Control and Estimation Tools Manager Projects
Saving Control and Estimation Tools Manager Projects
A Control and Estimation Tools Manager project can consist of multiple tasks
including those from Simulink Control Design, Simulink Parameter
Estimation, and the Model Predictive Control Toolbox. Each task contains
data, objects, and results for the analysis of a particular model.

To save your projects, choose File -> Save in the Control and Estimation Tools
Manager window.

Save Projects Dialog Box

In the Save Projects dialog box, select the projects that you want to save. You
can save multiple projects within one file. Next, choose a directory and name
for your project file by either browsing for a file or typing the full pathname and
filename in the Save as box, and then click OK. The project file is saved as a
MAT-file.

Select the projects that you
want to save.

Choose a file name for your
saved projects.
4-3

4 Managing Multiple Projects

4-4
Opening Control and Estimation Tools Manager Projects
To open previously saved projects, choose File -> Load in the Control and
Estimation Tools Manager window.

In the Load Projects dialog box, choose a project file by either browsing for the
directory and file, or typing the full pathname and filename in the Load from
box. Project files are always MAT-files. The projects within this file appear in
the list box. Select the projects that you want to load, then click OK. When a
file contains multiple projects, you can choose to load them all or just a few.

Choose the file
containing the
project(s) you want
to load.

Select the projects you
want to load from the file.

5

Adaptive Lookup Tables

What Are Lookup Tables? (p. 5-2) A brief description of the lookup table concept

How Adaptive Lookup Tables Work
(p. 5-3)

More details on adaptive lookup tables

Implementation of Adaptive Lookup
Tables (p. 5-4)

What adaptive lookup tables look like in Simulink

Example: n-D Adaptive Lookup Table
(p. 5-8)

An example using an multidimensional adaptive lookup
table

5 Adaptive Lookup Tables

5-2
What Are Lookup Tables?
Lookup tables are used to store numeric data in a multidimensional array
format. In the simpler two-dimensional case, lookup tables can be represented
by matrices. Each element of a matrix is a numerical quantity, which can be
precisely located in terms of two indexing variables. At higher dimensions,
lookup tables can be represented by multidimensional matrices, whose
elements are described in terms of a corresponding number of indexing
variables.

Lookup tables provide a means to capture the dynamic behavior of a physical
(mechanical, electronic, software) system. The behavior of a system with M
inputs and N outputs can be approximately described by using N lookup tables,
each consisting of an array with M dimensions.

Lookup tables are usually generated by experimentally collecting or artificially
creating the input and output data of a system. In general, as many indexing
parameters are required as the number of input variables. Each indexing
parameter may take a value within a predetermined set of data points, which
are called the breakpoints. The set of all breakpoints corresponding to an
indexing variable is called a grid. So, a system with M inputs is girded by M
sets of breakpoints. Given the input data, the breakpoints are then used to
locate the array elements, where the output data of the system are stored. For
a system with N outputs, N array elements are located and the corresponding
data are stored at these locations.

Once a lookup table is created using the input and output measurements as
described above, the corresponding multidimensional array of values can be
used in applications without the need of remeasuring the system outputs. In
fact, only the input data is required to locate the appropriate array elements in
the lookup table and the approximate system output can be read from the data
stored at these locations. Therefore, a lookup table provides a suitable means
of capturing the input-output mapping of a static system in the form of numeric
data stored at predetermined array locations.

How Adaptive Lookup Tables Work
How Adaptive Lookup Tables Work
The generation of lookup tables as described above establishes a permanent
and static mapping of input-output behavior of a physical system. Statically
defined lookup tables cannot accommodate the time-varying behavior
(characteristics) of a physical plant. On the other hand, it is well known that
the behavior of actual physical systems often vary with time due to wear,
environmental conditions, and manufacturing tolerances. Under such
variations, the static mapping of input-output behavior of a plant described by
the lookup table may no longer provide a valid representation of the plant
characteristics.

Adaptive lookup tables, on the other hand, incorporate the time-varying
behavior of physical plants into the lookup table generation and maintenance
process while providing all of the functionality of a regular lookup table.

The adaptive lookup table receives the input and output measurements of a
plant’s behavior, which are then used to dynamically create and update the
content of the underlying lookup table. In addition to requiring the input data
to create the lookup table, the adaptive lookup table also uses the output data
of the plant to recalculate the table values. As an example, the output data of
the plant can be collected by placing sensors at appropriate locations in a
physical system.

The input measurements are used to locate the array elements by comparing
these input values with the breakpoints defined for each indexing variable.
Next, the output measurements are used to recalculate the numeric value
stored at these array locations. However, unlike a regular table, which only
stores the array data before the actual use of the lookup table, the adaptive
table continuously improves the content of the lookup table. This continuous
improvement of the table data is referred to as the adaptation or learning
process.

The adaptation process involves statistical and signal processing algorithms to
recapture the input-output behavior of the plant. The adaptive lookup table
always tries to provide a valid representation of the plant dynamics even
though the plant behavior may be time varying. The underlying signal
processing algorithms are also robust against reasonable measurement noise
and they provide appropriate filtering of noisy output measurements.
5-3

5 Adaptive Lookup Tables

5-4
Implementation of Adaptive Lookup Tables
The MathWorks implements adaptive lookup tables as Simulink blocks. These
blocks create multidimensional lookup tables from measured or simulated
data. The inputs and outputs of a n-D Adaptive Lookup Table block with two
inputs are shown below.

Adaptive Lookup Table Block Showing Inputs and Outputs

The following are descriptions of the input and output parameters:

• The inputs u and y are the coordinate data and system output
measurements, respectively. For example, if you want to create a lookup
table to model the behavior of an engine’s efficiency as a function of engine
rpm and manifold pressure, u = [rpm, pressure] and y = [efficiency].

• The initial table data may be entered either as a dialog parameter (by
double-clicking on the block) or as an input port (i.e., the input port Tin in
the figure). You can start, stop, and reset the adaptation through the Enable
input port.

• The outputs of the block include the value of the currently adapted table cell
(Y), the number (N) of that cell (which may be specified through the block
dialog), and if required, the whole adapted table data (Tout).

Implementation of Adaptive Lookup Tables
Adaptive Lookup Table Library
Three adaptive lookup tables are available in Simulink Parameter Estimation.

The three blocks are

• “Adaptive Lookup Table (1D Stair-Fit)” on page 7-2 — One-dimensional
adaptive lookup

• “Adaptive Lookup Table (2D Stair-Fit)” on page 7-4 — Two-dimensional
adaptive lookup

• “Adaptive Lookup Table (nD Stair-Fit)” on page 7-7 — Multidimensional
adaptive lookup (use this for dimension 3 or higher)
5-5

5 Adaptive Lookup Tables

5-6
Using Adaptive Lookup Tables in Simulink Models
A typical Simulink diagram using an adaptive lookup table block is shown
below.

Simulink Diagram Using an Adaptive Lookup Table

In this figure, the Experiment Data block imports a set of experimental data
into the Simulink environment through MATLAB workspace variables. The
initial table is specified through a constant matrix block. When the simulation
runs, the initial table begins to adapt to new data inputs and the resulting
table is copied to the block’s output.

Real-Time Lookup Tables
You can use experimental data from sensor measurements collected by
running various tests on a system in real time. The measured data is then sent
to the adaptive table block to generate a lookup table describing the relation
between the system inputs and output.

The adaptive lookup table block may also be used in a real-time environment,
where some time-varying properties of a system need to be captured. This can
be done by generating C code using Real-Time Workshop®, which can then be

Implementation of Adaptive Lookup Tables
run in an xPC or dSpace environment. Since the adaptation may be started,
stopped, or reset if desired, some logic may be used to adapt the table data only
when it is desired. The Cell No output, and the Enable and Lock inputs
facilitate this process. The Enable input is used to start and stop the
adaptation, while the Lock input is used to update only one of the table cells.
The Lock input combined with some logic using the Cell No output provide the
means for updating only the desired table cells during a simulation run.

Setting Adaptive Lookup Table Parameters
Adaptive lookup tables are highly configurable, as shown below.

n-D Adaptive Lookup Table Dialog Box

For details on how to set these parameters, see the individual reference pages.

The number of dimensions for the adaptive
lookup table.

A set of one-dimensional vectors that
contains possible block input values for the
input variables.

Use this port to input table data.

The initial table output values. This (n-D)
array must be of size (n-1)-by-(n-1)... -by-
(n-1), (D times) where D is the number of
dimensions and n is the number of input
breakpoints.

Number values assigned to cells. This vector
must be the same size as the table data
array, and each value must be unique.

Sample mean averages all the values
received within a cell. Sample mean with
forgetting gives more weight to the new
data.

A number between 0 and 1 that regulates
the weight given to new data during the
adaptation.

Check boxes for customizing the I/O
channels of the block and allowing
adaptation to out-of-range data.
5-7

5 Adaptive Lookup Tables

5-8
Example: n-D Adaptive Lookup Table
This example shows an n-D adaptive lookup table at work and includes many
of the key features associated with adaptive lookup tables. Type

enginetable

at the MATLAB prompt to open this model.

This model has several key features:

• Input — The adaptive lookup table input is the experimental data. It is also
possible to make the original table itself an input.

• An enable feature — You can turn the adaptation on and off during the
estimation to see how the basic features work.

• A lock feature — You can lock the table so that only one cell is adapting. This
is useful if you have one section in your data that is highly erratic or
otherwise difficult for the algorithm to handle.

• Output — Adaptive lookup breakpoints are the output data.

Example: n-D Adaptive Lookup Table
Running the Example
To start the enginetable simulation, pull down the Simulation menu and
choose the Start command or, on Microsoft Windows, click the Start button

on the Simulink toolbar. The simulation begins by populating the adaptive
lookup table with random data. This figure shows the input and adaptive data
side by side.
5-9

5 Adaptive Lookup Tables

5-1
As the simulation progresses, the surface on the right adapts to match the
measured input data. This figure shows the final adaptation.

The fit is quite good. Try using the enable and lock features to see how they
change the adaptation.
0

6

Estimating from the
Command Line

Simulink Parameter Estimation provides an object-oriented command-line API for the estimation
problem.

Introduction (p. 6-2) A brief discussion of the estimation problem in an
object-oriented context

Example: Estimating Parameters and
Initial Conditions of the F14 Model
(p. 6-4)

How to create and simulate an estimation project from
the command line

Creating and Customizing Estimation
Projects (p. 6-12)

Using properties and methods to specify features of the
estimation project

Creating Transient Data Objects
(p. 6-13)

How to instantiate and use transient data objects, which
contain input and output data

Creating State Data Objects (p. 6-17) How to instantiate and use state data objects, which
contain information about known states in your Simulink
model

Creating Transient Experiment
Objects (p. 6-20)

How to instantiate and use parameter objects, which
maintain data about parameters you want to estimate

Creating Parameter Objects (p. 6-23) How to instantiate and use state objects, which maintain
data about the block states you want to estimate

Creating State Objects (p. 6-27) How to instantiate and use transient experiment objects

Creating Estimation Objects (p. 6-31) How to instantiate and use estimation objects, which
coordinate your model, experiment, parameter, and state
objects

6 Estimating from the Command Line

6-2
Introduction
In addition to the Control and Estimation Tools Manager, Simulink Parameter
Estimation provides a collection of functions for performing parameter and
state estimation. These functions perform the same tasks as the tools manager,
but have the advantages of command-line execution. When you perform a state
or parameter estimation using the Simulink Parameter Estimation GUI,
Simulink Parameter Estimation creates MATLAB objects for all the states and
parameters of your model. If you have a large number of states or parameters,
this can use up large amounts of memory and cause computational delays.
With the command-line approach, only those states and parameters that you
select are assigned MATLAB objects, which is more efficient.

In addition, the command-line approach is useful for batch jobs, where, for
example, you may want to test large numbers of models.

Note Simulink Parameter Estimation uses MATLAB objects to perform
estimation tasks. This chapter discusses what you need to know about
object-oriented programming for using Simulink Parameter Estimation, but
see “MATLAB Classes and Objects” in the MATLAB Programming
documentation for a detailed description of the rules of object-oriented
programming in MATLAB.

The command-line interface for Simulink Parameter Estimation requires a
Simulink model as a starting point for analysis and estimation. Once you have
selected a candidate model, the estimation process consists of these steps:

• Defining experiments consisting of empirical data sets and the operating
conditions and/or initial conditions of your model

• Selecting the variables and states to be estimated

• Performing the estimation

• Reviewing the results and iterating as necessary

• Validating estimation results

Introduction
The following sections discuss these topics:

• “Example: Estimating Parameters and Initial Conditions of the F14 Model”
— How to perform the estimation process using command-line functions

• “Creating and Customizing Estimation Projects” — How to use methods and
properties to customize your estimation project’s features
6-3

6 Estimating from the Command Line

6-4
Example: Estimating Parameters
and Initial Conditions of the F14 Model

To define an experiment, you must start with a Simulink model. For this
example, type

f14

to load the F14 fighter jet model into the MATLAB workspace. The figure below
shows the f14 model.

F14 Fighter Model

This example outlines the basics of constructing an estimation project using
object-oriented code. Only what you need to run the example is presented; see
“Creating and Customizing Estimation Projects” on page 6-12 for details on all
the properties and methods associated with parameter estimation.

Example: Estimating Parameters and Initial Conditions of the F14 Model
Baseline Simulation
Before running an estimation, you need a baseline for data comparison. First,
you must choose parameters and states’ initial conditions for estimation. This
example uses Ta, the actuator time constant, and Zd and Md, the vertical
velocity and pitch rate gains, respectively. Then use the code below to run the
Simulink f14 model. Note that this is standard Simulink code and does not
involve Simulink Parameter Estimation in any way. See sim in the Simulink
Reference documentation for information about running Simulink models from
the MATLAB command line.

%% Open the model and load experimental data.
open_system('f14')
load f14_estim % Load empirical I/O data.

%% Set initialize unknown parameters
% Actuator time constant (ideal: Ta = 0.05)
Ta = 0.5;

% Aircraft dynamic model parameters (ideal: Md = -6.8847,
% Zd = -63.998)
Md = -1; Zd = -80;

%% Plot measured data and simulation results
[T,X,Y] = sim('f14', time, [], [time iodata(:,1)]);
plot(time, iodata(:,2:3), T, Y, '--');
legend('Measured angle of attack', 'Measured pilot g force', ...
 'Simulated angle of attack', 'Simulated pilot g force');
6-5

6 Estimating from the Command Line

6-6
This figure appears.

Baseline Comparison of Measured and Simulated F14 I/O Data

As you can see, the measured and simulated data are a poor match. The rest of
this section describes how to estimate values for Ta, Zd, and Md that result in a
better match of data sets.

Creating a Transient Experiment Object
Once you have a model, and have identified the parameters you want to
estimate, the next step is to create the objects required for an estimation.
ParameterEstimator is both the name of the class and the object instantiated
by that class. Classes are created by a constructor; objects are created by
invoking the class name with parameters.

First, create an estimation project object. This is the constructor syntax:

hExp = ParameterEstimator.TransientExperiment('f14');

MATLAB responds with information about the f14 model.

Example: Estimating Parameters and Initial Conditions of the F14 Model
Experimental transient data set for the model 'f14':

Output Data
 (1) f14/alpha (rad)
 (2) f14/Nz Pilot (g)

Input Data
 (1) f14/u

Initial States
 (1) f14/Actuator Model
 (2) f14/Aircraft Dynamics Model/Transfer Fcn.1
 (3) f14/Aircraft Dynamics Model/Transfer Fcn.2
 (4) f14/Controller/Alpha-sensor Low-pass Filter
 (5) f14/Controller/Pitch Rate Lead Filter
 (6) f14/Controller/Proportional plus integral compensator
 (7) f14/Controller/Stick Prefilter
 (8) f14/Dryden Wind Gust Models/Q-gust model
 (9) f14/Dryden Wind Gust Models/W-gust model

Assigning Experimental Data
to Inputs and Outputs of the Model
Once you’ve created a ParameterEstimator object, assign input and output
experimental (i.e., empirical) data.

%% Create objects to represent the experimental data sets.
set(hExp.InputData(1), 'Data', iodata(:,1), 'Time', time);

set(hExp.OutputData(1), 'Data', iodata(:,2), 'Time', ...
time, 'Weight', 5);
set(hExp.OutputData(2), 'Data', iodata(:,3), 'Time', time);

Creating Parameter Objects for Estimation
To activate parameters for estimation, you must create parameter objects for
the parameters you want to estimate. For this example, use Ta, the actuator
time constant, and Zd and Md, the vertical velocity and pitch rate gains,
respectively. The Zd and Md gains are located in the F14 aircraft dynamics
subsystem.
6-7

6 Estimating from the Command Line

6-8
F14 Aircraft Dynamics Subsystem

First, create ParameterEstimator objects for the parameters you want to
estimate.

%% Create objects to represent parameters.
hPar(1) = ParameterEstimator.Parameter('Ta');
set(hPar(1), 'Minimum', 0.01, 'Maximum', 1, 'Estimated', true)

hPar(2) = ParameterEstimator.Parameter('Md');
set(hPar(2), 'Minimum', -10, 'Maximum', 0, 'Estimated', true)

hPar(3) = ParameterEstimator.Parameter('Zd');
set(hPar(3), 'Minimum', -100, 'Maximum', 0, 'Estimated', true)

%% Create objects to represent initial states.
hIc(1) = ParameterEstimator.State('f14/Actuator Model');
set(hIc(1), 'Minimum', 0, 'Estimated', false);

Example: Estimating Parameters and Initial Conditions of the F14 Model
You can also use dot notation here. For example, instead of

set(hPar(2), 'Minimum', -10, 'Maximum', 0, 'Estimated', true)

you can write

hPar(2).Estimated=true;
hPar(2).Minimum=-10;
hPar(2).Maximum=0;

Creating an Estimation Object
and Running the Estimation
Finally, create an estimation object and run the estimation, using gcs to get the
full pathname to the Simulink model.

hEst = ParameterEstimator.Estimation(gcs, hPar, hExp);
hEst.States = hIc;

%% Setup estimation options
hEst.OptimOptions.Algorithm = 'lsqnonlin';
hEst.OptimOptions.GradientType = 'refined';
hEst.OptimOptions.Display = 'iter';

%% Run the estimation
estimate(hEst);
6-9

6 Estimating from the Command Line

6-1
%% Plot measured data and final simulation results
[T,X,Y] = sim('f14', time, [], [time iodata(:,1)]);
figure
plot(time, iodata(:,2:3), T, Y, '--');
legend('Measured angle of attack', 'Measured pilot g force', ...
 'Simulated angle of attack', 'Simulated pilot g force');

This figure shows the results of the estimation.

The measured and simulated outputs now appear to be a close match. Next,
look at the estimated values to see how they compare with the default values
of the f14 model.

%% Look at the estimated values
find(hEst.Parameters, 'Estimated', true)
0

Example: Estimating Parameters and Initial Conditions of the F14 Model
MATLAB responds with

(1) Parameter data for 'Ta':

 Parameter value : 0.05
 Initial guess : 0.5

 Estimated : true

 Referenced by:

(2) Parameter data for 'Md':

 Parameter value : -6.884
 Initial guess : -1

 Estimated : true

 Referenced by:

(3) Parameter data for 'Zd':

 Parameter value : -63.99
 Initial guess : -80

 Estimated : true

 Referenced by:

You can verify that these values match the default values of the f14 model by
clearing your workspace, loading the model, and checking the values.

clear all
f14
whos
6-11

6 Estimating from the Command Line

6-1
Creating and Customizing Estimation Projects
The following sections describe in more detail how to create and modify
transient data and estimation objects:

• “Creating Transient Data Objects” on page 6-13

• “Creating State Data Objects” on page 6-17

• “Creating Transient Experiment Objects” on page 6-20

• “Creating Parameter Objects” on page 6-23

• “Creating State Objects” on page 6-27

• “Creating Estimation Objects” on page 6-31

First, a quick look at terminology:

• Objects are instantiations of classes.

• Classes contain, or rather, define, properties and methods.

• You use a constructor to create an instance of an object, and use the set
method or dot notation to modify the properties of your objects.
2

Creating Transient Data Objects
Creating Transient Data Objects
Estimating parameters requires a transient data object, which you create
using a constructor. The syntax to create a transient data object is

h = ParameterEstimator.TransientData('block'); % I/O port block
h = ParameterEstimator.TransientData('block', portnumber);
% Internal block
h = ParameterEstimator.TransientData('block', data, time);
h = ParameterEstimator.TransientData('block', data, Ts);
h = ParameterEstimator.TransientData('block', portnumber, data,

time);
h = ParameterEstimator.TransientData('block', portnumber, data,

Ts);

Properties of Transient Data Objects
This table lists the properties of the transient data object and the associated
input parameters.

Transient Data Object Properties

Property Description

Block Name of the Simulink block with which the data is
associated. Must be a string.

PortType The type of signal that this object represents is
determined in the constructor from the Block property,
which may be Inport, Outport, or Signal.

PortNumber For data associated with the outputs of regular blocks
or subsystems, this property specifies the output port
number of interest. The default value is 1.

Dimensions Dimensions of the data required for this data set. It is
computed from the CompiledPortDimensions property
of the appropriate port of the block, and it defines the
size of other properties. Currently, Simulink supports
scalar, vector, or matrix signals, so Dimensions is either
a scalar or a 1-by-2 array.
6-13

6 Estimating from the Command Line

6-1
Data Actual experimental data. Its size must be consistent
with the Dimensions property. To conform with
Simulink conventions, the data is stored in the
following formats:

• Scalar or vector-valued data. The data is of the form
Ns m, where Ns is the number of data samples, and m
is the number of channels in the signal.

• Multidimensional data (matrix and higher
dimensions). The data is of the form m1 . . . mn Ns,
where Ns is the number of data samples, and mi is the
number of channels in the ith dimension of the signal.

• For missing or unspecified data, NaNs are used.

Ts,
Tstart,
Tstop

For uniformly sampled data, Ts is the sample time and
Tstart is the start time of the signal. The stop time
Tstop and the time vector Time are given by

Tstop = Tstart + Ts * (Ns -1)

Time = Tstart : Ts : Tstop

For nonuniform time data, Ts is set to NaN, and the
start and stop times are calculated from the time
vector.

Transient Data Object Properties (Continued)

Property Description
4

Creating Transient Data Objects
Time The time data in column vector format. The length of
Time must be consistent with the number of samples in
Data.

For a nonuniformly spaced Time vector, its length
should match the length of Data.

Otherwise, Time is automatically adjusted based on the
length of Data.

Modifying Ts resets Time internally. In this case, Time
is a virtual property whose value is computed from Ts
and Tstart when you request it. The rules for setting
time related properties are

• Modifying Time sets

Ts = NaN
Tstart = Time(1)

• If the time vector is uniformly spaced, a sample time
Ts is calculated.

• Modifying Tstart translates time forward or
backward.

• Modifying Ts sets Time = [] internally and generates
it when required by the simulation.

Weight The weight associated with each channel of this data
set. It is used to specify the relative importance of
signals. The default value is 1.

InterSample Interpolation method between samples can be
zero-order hold (zoh) or first-order hold (foh). This
property is used for data preprocessing.

Transient Data Object Properties (Continued)

Property Description
6-15

6 Estimating from the Command Line

6-1
Modifying Transient Data Object Properties
Once a transient data object is created, you can modify its properties using this
syntax:

in1.Data = rand(2,1,10); % 10 data values each of size [2 1]
in1.Time = 1:10; % Automatically converted to column vector

Some properties (e.g., Weight) support scalar expansion with respect to the
value of Dimensions property.

Example: Assigning Input Port Data
To assign data to an input port with 2x3 port dimensions, use

in1 = ParameterEstimator.TransientData(gcb, rand(2,3,100), 0.05)

MATLAB responds with

(1) Transient data for Inport block 'portdata_test_noSim/By//Pass
Air Valve Voltage':
Sampling interval: 0.05 sec.
Data set has 100 samples and 6 channels.

Using Class Methods
The description of some of the important methods is given below.

• select — Used to extract a portion of data. The result is returned in a new
transient data object.
in2 = select(in1, 'Sample', 10:100); % 91 samples

in3 = select(in1, 'Range', [1 4]); % Samples for 1<t<4
% ... or an alternative

in3 = select(in1, 'Sample', find(in1.Time > 1 & in1.Time < 4));

To extract data from a subset of available channels, use
in4 = select(in1, 'Channel', [1 3 2]);
% channels 1,3,and 2 in this order

• hiliteBlock — Highlights the block associated with this object in the
Simulink diagram.
6

Creating State Data Objects
Creating State Data Objects
The ParameterEstimator.StateData object defines the states of a dynamic
Simulink block. It is used in a transient estimation context to define known
initial conditions of a block diagram model, and in a steady-state estimation
context to define the known states of the model.

For example, the Simulink model of a simple mass-spring-damper system has
two integrator blocks to generate velocity and position signals from
acceleration and velocity values, respectively, during simulation. If the
corresponding physical system is known to be at rest at the beginning of an
experiment, the initial states (velocity and position) of these integrators are
zero. So, two @StateData objects can be created to describe these known initial
conditions.

This is the syntax for creating this object:

h = ParameterEstimator.StateData('block');
h = ParameterEstimator.StateData('block', data);

In the first constructor, the state vector is initialized from the model containing
the block.

Properties of the State Data Object
The description of some of the important properties is given in the table below.

State Data Object Properties

Property Description

Block Name of the Simulink block whose states are defined
by this object

Dimensions Scalar value to store the number of states of the
relevant block
6-17

6 Estimating from the Command Line

6-1
Data Column vector to store the initial value of the state for
the block specified by this object. The length of this
vector should be consistent with the Dimensions
property. Since the underlying Simulink model also
stores an initial state vector for all dynamic blocks, the
following conventions are used to resolve the initial
state values during estimations:

• If Data is not empty, use it when forming the state
vector.

• If Data is empty, get the state vector for this block
from the model. This behavior is useful when using
helper methods to create an experiment object that
instantiates empty state data objects for all dynamic
blocks in the Simulink model.

• If there is no state data object for a dynamic block in
the model, get the state vector of that block from the
model. This behavior is useful for command-line
users, when there are too many states in the model
and only a few of them have to be set to different
initial values.

Ts Sampling time of discrete blocks. Set to 0 for
continuous blocks. This property is read only and is
currently used for information only.

Domain String to hold the physical domain of the block. Used for
SimMechanics or SimPowerSystems blocks with states.

State Data Object Properties (Continued)

Property Description
8

Creating State Data Objects
Example: Initial Condition Data
To create an empty initial condition object for the
engine_idle_speed/TransferFcn2, use

st1 = ParameterEstimator.StateData ...
('engine_idle_speed/Transfer Fcn2', [1 2])

(1) State data for 'f14/Dryden Wind Gust Models/W-gust model'
block:
The block has 2 continuous state(s).
State value : [1;2]

Modifying Properties
Once a state data object is created, its properties can be modified using the
following syntax:

st1.Data = [2 3]; % State vector of size 2

Some properties (e.g., Data) support scalar expansion with respect to the value
of the Dimensions property.

Using Class Methods
The description of some of the important methods is given below:

• hiliteBlock — Highlights the block associated with this object in the
Simulink diagram

• update — Updates the object after the Simulink model has been modified in
some way. If the Dimensions property value changes, the other properties
are reset to their default values.
6-19

6 Estimating from the Command Line

6-2
Creating Transient Experiment Objects
The @TransientExperiment object encapsulates data measured at the input
and output ports of a system during a single experiment, as well as the system’s
known initial states.

The syntax to create a transient experiment object is

h = ParameterEstimator.TransientExperiment('model');

where model specifies the name of the Simulink model.

Properties of Transient Experiment Objects
The description of some of the important properties is given in the table below.

Example: Creating an F14 Experiment
To create an empty transient experiment for the f14 model, use

Transient Experiment Object Properties

Property Description

Model Simulink model with which this experiment is
associated

InputData,
OutputData

Transient data objects associated with appropriate I/O
blocks in the model. Blocks with unassigned objects or
objects with no data are not used in estimations,
meaning:

• For input ports, assign zeros to these ports/channels
during simulation.

• For output ports, don’t use these ports/channels in
the cost function.

InitialStates State data objects associated with appropriate dynamic
blocks in the model

InitFcn Function to be executed to configure the model for this
particular experiment
0

Creating Transient Experiment Objects
exp1 = ParameterEstimator.TransientExperiment('f14')
Experimental (Transient) data set for the model 'f14':
Outputs
(1) f14/alpha (rad)
(2) f14/Nz Pilot (g)
Inputs
(1) f14/u
Initial States
(1) f14/Actuator Model
(2) f14/Aircraft Dynamics Model/Transfer Fcn.1
(3) f14/Aircraft Dynamics Model/Transfer Fcn.2
(4) f14/Controller/Alpha-sensor Low-pass Filter
(5) f14/Controller/Pitch Rate Lead Filter
(6) f14/Controller/Proportional plus integral compensator
(7) f14/Controller/Stick Prefilter
(8) f14/Dryden Wind Gust Models/Q-gust model
(9) f14/Dryden Wind Gust Models/W-gust model

Example: Creating a Van der Pol Experiment
from User Objects
To create a transient experiment from user objects for I/Os and states, use

out1 = ParameterEstimator.TransientData('vdp/Out1');
ic1 = ParameterEstimator.StateData('vdp/x1');
exp1 = ParameterEstimator.TransientExperiment...
(gcs, [], out1, ic1);
Experimental (Transient) data set for the model 'vdp':
Outputs
(1) vdp/Out1
Inputs
(none)
Initial States
(1) vdp/x1

Modifying Properties
The objects referred in InputData, OutputData, and InitialStates properties
can be modified or removed as necessary.
6-21

6 Estimating from the Command Line

6-2
Using Class Methods
The description of one important method is given below:

update — Updates the object after the Simulink model has been modified in
some way. The object listed in the InputData, OutputData, and InitialStates
properties are updated in turn.
2

Creating Parameter Objects
Creating Parameter Objects
The @Parameter object refers to the parameters of the Simulink model marked
for estimation. Some of the Simulink model parameters are to be estimated and
storage is required for the initial values, current values, ranges, etc. One
@Parameter object corresponds to each parameter in the Simulink model to be
potentially estimated. These objects represent estimation parameters of any
type such as scalars, vectors, and multidimensional arrays.

Constructor
The syntax to create a parameter object is

h = ParameterEstimator.Parameter('Name');
h = ParameterEstimator.Parameter('Name', Value);
h = ParameterEstimator.Parameter('Name', Value, Minimum,

Maximum);

In the first case, Name is a workspace variable. In the other cases, Name does not
need to exist in the workspace at the time of object creation. However, it is
required at estimation time.

Properties of Parameter Objects
The description of some of the important properties of parameter objects is
given in the table below.

Parameter Object Properties

Property Description

Name Parameter name. The parameter can be a
multidimensional array of any size.

Dimensions Dimensions of the value of the parameter. This is the
defining property for the size of other properties.

Value The current or estimated value of the parameter. This is
the defining property for size checking and scalar
expansions.
6-23

6 Estimating from the Command Line

6-2
Estimated A Boolean array of the same size as that of Value.
Depending on the value of the elements of the
Estimated property, the behavior of the corresponding
elements of Value is as follows:

• The elements of Value is estimated if the
corresponding elements in Estimate are set to true.
The result is stored in the Value property.

• The elements of Value are not estimated if the
corresponding elements in Estimated are set to false.
However, these elements are used to reset the
corresponding workspace parameter during
estimations.

This property is set to false by default, meaning that the
parameter value is not estimated.

InitialGuess Separate properties are required to hold the initial and
current values of the parameters. So, when the
InitialGuess property is initialized with a value, both
it and the Value property are assigned the same value.

Depending on the value of the elements of the
Estimated property, the behavior of the corresponding
elements of InitialGuess is as follows:

• If any element in Estimated is set to true, then the
corresponding element of InitialGuess is used to
initialize the workspace parameter during
estimations.

• If any element in Estimated is set to false, then the
corresponding element of InitialGuess is not used in
any way.

Parameter Object Properties (Continued)

Property Description
4

Creating Parameter Objects
Example: F14 Model
To create a parameter object for the parameter Ta in the f14 model, use

par1 = ParameterEstimator.Parameter('Ta')
(1) Parameter data for 'Ta':
Parameter value : 0.05
Initial value : 0.05
Estimated : false
Referenced by the blocks:
f14/Actuator Model

Example: Gain Matrix
To create a parameter object for a matrix parameter K of size 4-by-1, use

par1 = ParameterEstimator.Parameter('K', [1 2 3 4]')
(1) Parameter data for 'K':
Parameter value : [1;2;3;4]
Initial value : [1;2;3;4]
Estimated elements : [false;false;false;false]
Referenced by the blocks:

Modifying Properties
Once a parameter object is created, its properties can be modified using the
following syntax:

par1.Estimated = true; % Estimate this parameter

Most of the properties, for example, Estimated and TypicalValue support
scalar expansion with respect to the size of Value.

Minimum,
Maximum

Parameter range

TypicalValue The typical values of the parameters. This property is
used in estimations for scaling purposes. The default
value is 1.

Parameter Object Properties (Continued)

Property Description
6-25

6 Estimating from the Command Line

6-2
Using Class Methods
The description of some of the important methods is given below:

• hiliteBlock — Highlights the referenced blocks associated with parameter
objects in the Simulink diagram.

• update — Updates the parameter object after the Simulink model has been
modified in some way. If the size of Value property changes, then the other
properties are reset to their default values.
6

Creating State Objects
Creating State Objects
One @State object corresponds to each Simulink block with states in your
model.

Constructor
The syntax to create a state object is

h = ParameterEstimator.State('block');
h = ParameterEstimator.State('block', Value);
h = ParameterEstimator.State('block', Value, Minimum,

Maximum);

In the first case, the state vector is initialized from the model containing the
block. In the other cases, block does not need to exist in the workspace at the
time of object creation. However, it is required at estimation time.

Properties of State Objects
The description of some of the important properties of state objects is given in
the table below.

State Object Properties

Property Description

Block Name of the Simulink block whose states are defined
by this object.

Dimensions Scalar value to store the number of states of the
relevant block.

Value Column vector to store the value of the state for the
block specified by this object. The length of this vector
should be consistent with the Dimensions property.
6-27

6 Estimating from the Command Line

6-2
Estimated A Boolean array of the same size as that of Value.
Depending on the value of the elements of the
Estimated property, the behavior of the corresponding
elements of Value is as follows:

• The elements of Value are estimated if the
corresponding elements in Estimate are set to true.
The result is stored in the Value property.

• The elements of Value are not estimated if the
corresponding elements in Estimated are set to false.
However, these elements are used to reset the
corresponding states during estimations.

This property is set to false by default, meaning that the
state value is not estimated.

InitialGuess Separate properties are required to hold the initial and
current values of the states. So, when the InitialGuess
property is initialized with a value, both it and the
Value property are assigned the same value.

Depending on the value of the elements of the
Estimated property, the behavior of the corresponding
elements of InitialGuess is as follows:

• If any element in Estimated is set to true, then the
corresponding element of InitialGuess is used to
initialize the state during estimations.

• If any element in Estimated is set to false, then the
corresponding element of InitialGuess is not used in
any way.

Minimum,
Maximum

State vector range.

TypicalValue The typical values of the states. This property is used in
estimations for scaling purposes. The default value is 1.

State Object Properties (Continued)

Property Description
8

Creating State Objects
Example: F14 Model
To create a state object for the f14/Actuator Model block in the f14 model, use

st1 = ParameterEstimator.State(gcb)

MATLAB returns

(1) State data for f14/Actuator Model block:

 The block has 1 continuous state(s).

 State value : 0
 Initial guess : 0
 Estimated : false

Modifying Properties
Once a state object is created, its properties can be modified using the following
syntax:

ic1.Estimated = true; % Estimate this state

Most of the properties, for example, Estimated and TypicalValue, support
scalar expansion with respect to the size of Value.

Using Class Methods
The description of some of the important methods is given below:

• hiliteBlock — Highlights the referenced blocks associated with state
objects in the Simulink diagram.

Ts Sampling time of discrete blocks. Set to zero for
continuous blocks. This property is read-only and is
currently used for information only.

Domain String to hold the physical domain of the block. Used for
SimMechanics or SimPowerSystems blocks with states.

State Object Properties (Continued)

Property Description
6-29

6 Estimating from the Command Line

6-3
• update — Updates the state object after the Simulink model has been
modified in some way. If the size of Value property changes, then the other
properties are reset to their default values.
0

Creating Estimation Objects
Creating Estimation Objects
The @Estimation object is the coordinator of the model, experiment, and
parameter objects.

Constructor
The syntax to create an estimation object is

h = ParameterEstimator.Estimation('model');
h = ParameterEstimator.Estimation('model', hParam);
h = ParameterEstimator.Estimation('model', hParam, hExps);

Properties of Estimation Objects
The description of some of the important properties of estimation objects is
given in the table below.

Estimation Object Properties

Property Description

Model Name of the Simulink model with which this
estimation is associated.

Experiments Experiments to be used in estimations. For multiple
experiments, the cost function uses a concatenation of
the output error vectors obtained using each
experimental data set.

Parameters Parameter objects to be used in estimations.

States State objects to be used in estimations. This is a handle
matrix with as many columns as there are experiments,
and as many rows as there are states in Model.
The handle matrix is created automatically in the
constructor. You can reorganize its rows to specify
shared states between experiments, and set the
Estimated flag of desired states.
If state data is provided in an experiment, the state
objects stored in the columns of this matrix are
initialized from the experiments.
6-31

6 Estimating from the Command Line

6-3
Example: F14 Model
To create an estimation object for the f14 model to estimate the parameters Ta
and Kf and two states, use

exp1 = ParameterEstimator.TransientExperiment(gcs);
par1 = ParameterEstimator.Parameter('Ta', 'Estimated', true);
par2 = ParameterEstimator.Parameter('Kf', 'Estimated', true);
est1 = ParameterEstimator.Estimation(gcs, [par1, par2], exp1);
est1.States(1,1).Estimated = true;
est1.States(6,1).Estimated = true;
est1

MATLAB returns

Estimated variables for the model 'f14':

Estimated Parameters

Using Experiments
 (1) f14 experiment

SimOptions Same as simset structure. This property is initialized to
simget(this.Model).

OptimOptions Same as optimset structure.

EstimInfo This property is used to store estimation-related
information at each iteration of the optimizer, and is
initialized as
this.EstimInfo = struct('Cost', [],...

'Covariance', [],...
'FCount', [],...
'FirstOrd', [],...
'Gradient', [],...
'Iteration', [],...
'Procedure', [],...
'StepSize', [],...
'Values', []);

Estimation Object Properties (Continued)

Property Description
2

Creating Estimation Objects
Estimated States for Experiment 'f14 experiment'
 (1) f14/Actuator Model
 (6) f14/Controller/Proportional plus integral compensator

Modifying Properties
Once an estimation object is created, its properties can be modified using the
following syntax:

est.OptimOptions.Algorithm = 'fmincon'; % Estimation method
est.OptimOptions.Display = 'iter'; % Show estimation information

...in workspace
est.Parameters(1).Estimated = false; % Do not estimate first

...parameter
est.States(2,3).Estimated = false; % Do not estimate second state

...of third expression

Using Class Methods
The description of some of the important methods is given below:

• compare — Compares an experiment and a simulation.

• simulate — Simulates the model with current parameters and states.

• estimate — Runs an estimation.

• restart — Restarts an estimation after it has finished running.

• update — Updates the estimation object after the Simulink model has been
modified in some way.
6-33

6 Estimating from the Command Line

6-3
4

7

Block Reference

Simulink Parameter Estimation includes three blocks that instantiate adaptive lookup tables in
Simulink models.

Adaptive Lookup Table (1D Stair-Fit)
(p. 7-2)

One-dimensional adaptive lookup tables

Adaptive Lookup Table (2D Stair-Fit)
(p. 7-4)

Two-dimensional adaptive lookup tables

Adaptive Lookup Table (nD Stair-Fit)
(p. 7-7)

n-dimensional adaptive lookup tables

Adaptive Lookup Table (1D Stair-Fit)
7Adaptive Lookup Table (1D Stair-Fit)Purpose Perform a one-dimensional adaptive table lookup

Description The Adaptive Lookup Table (1D Stair-Fit) block creates a one-dimensional
adaptive lookup table by dynamically updating the underlying lookup table.
The block uses the outputs, ydata, of your system to do the adaptations.

Each indexing parameter U may take a value within a set of adapting data
points, which are called breakpoints. Two breakpoints in each dimension define
a cell. The set of all breakpoints in one of the dimensions defines a grid. In the
one-dimensional case, each cell has two breakpoints, and the cell is a line
segment.

You can use the Adaptive Lookup Table (1D Stair Fit) to model time-varying
systems.

Data Type
Support

Doubles only

Dialog Box
7-2

Adaptive Lookup Table (1D Stair-Fit)
First input (row) breakpoint set
The vector of values containing possible block input values. The input
vector must be monotonically increasing.

Make initial table an input
Selecting this box forces the Adaptive Lookup Table (1D Stair-Fit) block to
ignore the Table data (initial) parameter. Instead, a new port appears
with Tin next to it. Use this port to input table data.

Table data (initial)
The initial table output values. This vector must be of size N-1, where N is
the number of breakpoints.

Table numbering data
Number values assigned to cells. This vector must be the same size as the
table data vector, and each value must be unique.

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean
averages all the values received within a cell. Sample mean with forgetting
gives more weight to the new data. How much weight is determined by the
Adaptation gain parameter.

Adaptation gain (0 to 1)
A number between 0 and 1 that regulates the weight given to new data
during the adaptation. A 0 means short memory (last data becomes the
table value), and 1 means long memory (average all data received in a cell).

Make adapted table an output
Selecting this box creates an additional output port for the adapted table.

Add adaptation enable/disable/reset port
Add an input port that enables, disables, or resets the adaptive lookup
table. 0 = disable; 1 = enable; 2 = reset to initial table data.

Add cell lock enable/disable port
A port that provides the means for updating only specified cells during a
simulation run. 0 = unlock; 1 = lock current cell.

Action for out-of-range input
Ignore or Adapt by extrapolating beyond the extreme breakpoints.
7-3

Adaptive Lookup Table (2D Stair-Fit)
7Adaptive Lookup Table (2D Stair-Fit)Purpose Perform two-dimensional adaptive table lookup

Description The Adaptive Lookup Table (2D Stair-Fit) block creates a two-dimensional
adaptive lookup table by dynamically updating the underlying lookup table.
The block uses the outputs (ydata) of your system to do the adaptations.

Each indexing parameter U may take a value within a set of adapting data
points, which are called breakpoints. Two breakpoints in each dimension define
a cell. The set of all breakpoints in one of the dimensions defines a grid. In the
two-dimensional case, each cell has four breakpoints and is a flat surface.

You can use the Adaptive Lookup Table (2D Stair-Fit) to model time-varying
systems.

Dialog Box
7-4

Adaptive Lookup Table (2D Stair-Fit)
First input (row) breakpoint set
The vector of values containing possible block input values for the first
input variable. The first input vector must be monotonically increasing.

Second input (column) breakpoint set
The vector of values containing possible block input values for the second
input variable. The second input vector must be monotonically increasing.

Make initial table an input
Selecting this box forces the Adaptive Lookup Table (2D Stair-Fit) block to
ignore the Table data (initial) parameter. Instead, a new port appears
with Tin next to it. Use this port to input table data.

Table data (initial)
The initial table output values. This 2-by-2 matrix must be of size
(n-1)-by-(m-1), where n is the number of first input breakpoints and m is
the number of second input breakpoints.

Table numbering data
Number values assigned to cells. This matrix must be the same size as the
table data matrix, and each value must be unique.

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean
averages all the values received within a cell. Sample mean with forgetting
gives more weight to the new data. How much weight is determined by the
Adaptation gain parameter.

Adaptation gain (0 to 1)
A number between 0 and 1 that regulates the weight given to new data
during the adaptation. A 0 means short memory (last data becomes the
table value), and 1 means long memory (average all data received in a cell).

Make adapted table an output
Selecting this box creates an additional output port for the adapted table.

Add adaptation enable/disable/reset port
Add an input port that enables, disables, or resets the adaptive lookup
table.
7-5

Adaptive Lookup Table (2D Stair-Fit)
Add cell lock enable/disable port
A port that provides the means for updating only specified cells during a
simulation run.

Action for out-of-range input
Ignore or Adapt by extrapolating beyond the extreme breakpoints.
7-6

Adaptive Lookup Table (nD Stair-Fit)
7Adaptive Lookup Table (nD Stair-Fit)Purpose Create an adaptive lookup table of arbitrary dimension

Description The Adaptive Lookup Table (nD Stair-Fit) block creates an adaptive lookup
table of arbitrary dimension by dynamically updating the underlying lookup
table. The block uses the outputs of your system to do the adaptations.

Each indexing parameter may take a value within a set of adapting data
points, which are called breakpoints. Breakpoints in each dimension define a
cell. The set of all breakpoints in one of the dimensions defines a grid. In the
n-dimensional case, each cell has two n breakpoints and is an (n-1)
hypersurface.

You can use the Adaptive Lookup Table (nD Stair-Fit) to model time-varying
systems.

Dialog Box
7-7

Adaptive Lookup Table (nD Stair-Fit)
Number of table dimensions
The number of dimensions for the adaptive lookup table.

Table breakpoints (cell array)
A set of one-dimensional vectors that contains possible block input values
for the input variables. Each input row must be monotonically increasing,
but the rows do not have to be the same length. For example, if the Number
of dimensions is 3, you can set the table breakpoints as follows:

{[1 2 3], [5 7], [1 3 5 7]}

Make initial table an input
Selecting this box forces the Adaptive Lookup Table (nD Stair-Fit) block to
ignore the Table data (initial) parameter. Instead, a new port appears
with Tin next to it. Use this port to input table data.

Table data (initial)
The initial table output values. This (n-D) array must be of size
(n-1)-by-(n-1) ... -by- (n-1), (D times) where D is the number of dimensions
and n is the number of input breakpoints.

Table numbering data
Number values assigned to cells. This vector must be the same size as the
table data array, and each value must be unique.

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean
averages all the values received within a cell. Sample mean with forgetting
gives more weight to the new data. How much weight is determined by the
Adaptation gain parameter.

Adaptation gain (0 to 1)
A number between 0 and 1 that regulates the weight given to new data
during the adaptation. A 0 means short memory (last data becomes the
table value), and 1 means long memory (average all data received in a cell).

Make adapted table an output
Selecting this box creates an additional output port for the adapted table.
7-8

Adaptive Lookup Table (nD Stair-Fit)
Add adaptation enable/disable/reset port
Add an input port that enables, disables, or resets the adaptive lookup
table.

Add cell lock enable/disable port
A port that provides the means for updating only specified cells during a
simulation run.

Action for out-of-range input
Ignore or Adapt by extrapolating beyond the extreme breakpoints.
7-9

Adaptive Lookup Table (nD Stair-Fit)
7-10

8

Function Reference

spetool

8-2

8spetoolPurpose Open the Simulink Parameter Estimation GUI

Syntax spetool('modelname')

Description spetool('modelname') opens the Simulink Parameter Estimation project for
the Simulink model with the name modelname.

See Also For more information about using the Simulink Parameter Estimation GUI,
see Chapter 1, “Getting Started.”

Index
A
adaptive lookup tables 5-2
adding data sets 1-20

C
command-line estimation 6-2
Controls and Estimation Tools Manager 1-8

D
data

detrending 3-13
exclusion 3-5
filtering 3-13
preprocessing 3-3

Data Import dialog 1-11
data sets

adding 1-20
detrending data 3-13
display options for estimation 1-25

E
estimation

display options 1-25
example of command-line estimation 6-4
from the command line 6-2
running 1-28
selecting parameters 1-15
selecting states 1-16
setting up a project 1-20
specifying initial conditions 2-1

excluding data 3-5
F
filtering data 3-13

I
importing

initial conditions 1-13
transient data 1-9

initial conditions
example of estimating 2-3
importing 1-13
specifying for estimation 2-1

initial guesses 1-18

L
lookup tables

adaptive 5-2

M
multiple projects and tasks 4-2

O
optimization

setting options for 1-41

P
parameters

selecting for estimation 1-15
specification of 1-22

preprocessing data 3-3
Index-1

Index

Ind
project
definition of 1-5

projects
saving 4-3

R
running an estimation 1-28

S
saving projects 4-3
selecting views 1-26
setting optimization options 1-41
setting options for simulation 1-41
setting upper/lower bounds 1-18
simulation

setting options for 1-41
specifying parameters 1-22
states

selecting for estimation 1-16

T
transient data

importing 1-9

U
upper/lower bounds

setting 1-18

V
views

selecting 1-26
ex-2

	Getting Started
	What Is Simulink Parameter Estimation?
	What You Need to Get Started
	Installation
	Prerequisite Software and Optional Software
	Required Knowledge
	Demos

	How Simulink Parameter Estimation Works
	Basic Steps in the Estimation Process
	Structure of an Estimation Project

	Setting Up the Estimation Data
	Importing Transient Data
	Specifying Initial Conditions
	Selecting Parameters for Estimation
	Selecting States for Estimation
	Initial Guesses and Upper/Lower Bounds

	Setting Up an Estimation Project
	Adding Data Sets
	Specifying and Setting Up Parameters
	Opening the Estimation Window

	Selecting Views for Plotting
	Running the Estimation
	Model Validation
	Example: Validating the Engine Idle Speed Model
	Loading and Importing the Validation Data
	Adding the Validation Task
	Running the Validation
	Residuals

	Setting Options for Optimization
	Selecting Optimization Methods
	Selecting Optimization Termination Options
	Selecting Additional Optimization Options
	Specifying the Cost Function

	Setting Options for the Simulation
	Selecting Simulation Time
	Selecting Solvers

	Estimating Independent Parameters

	Estimating Initial Conditions
	Why Estimate Initial Conditions?
	Example: Mass-Spring-Damper System
	Model Parameters
	Setting Up the Estimation Project
	Importing Transient Data and Selecting Parameters for Estimation
	Selecting Parameters and Initial Conditions for Estimation
	Creating the Estimation Task
	Running the Estimation and Viewing Results

	Preprocessing Data
	Why Preprocess Data?
	The Data Preprocessing Tool
	Excluding Data
	Selecting Data for Exclusion from the Data Editing Table
	Selection Data for Exclusion from a Plot of the Data
	Selecting Data for Exclusion by a Rule

	Detrending and Filtering
	Miscellaneous Data Handling
	Handling Missing Data
	Loading Data and Saving Modified Data Sets

	Managing Multiple Projects
	Multiple Projects and Tasks
	Saving Control and Estimation Tools Manager Projects
	Opening Control and Estimation Tools Manager Projects

	Adaptive Lookup Tables
	What Are Lookup Tables?
	How Adaptive Lookup Tables Work
	Implementation of Adaptive Lookup Tables
	Adaptive Lookup Table Library
	Using Adaptive Lookup Tables in Simulink Models
	Real-Time Lookup Tables
	Setting Adaptive Lookup Table Parameters

	Example: n-D Adaptive Lookup Table
	Running the Example

	Estimating from the Command Line
	Introduction
	Example: Estimating Parameters and Initial Conditions of the F14 Model
	Baseline Simulation
	Creating a Transient Experiment Object
	Assigning Experimental Data to Inputs and Outputs of the Model
	Creating Parameter Objects for Estimation
	Creating an Estimation Object and Running the Estimation

	Creating and Customizing Estimation Projects
	Creating Transient Data Objects
	Properties of Transient Data Objects
	Modifying Transient Data Object Properties
	Using Class Methods

	Creating State Data Objects
	Properties of the State Data Object
	Example: Initial Condition Data
	Modifying Properties
	Using Class Methods

	Creating Transient Experiment Objects
	Properties of Transient Experiment Objects
	Example: Creating an F14 Experiment
	Example: Creating a Van der Pol Experiment from User Objects
	Modifying Properties
	Using Class Methods

	Creating Parameter Objects
	Constructor
	Properties of Parameter Objects
	Example: F14 Model
	Example: Gain Matrix
	Modifying Properties
	Using Class Methods

	Creating State Objects
	Constructor
	Properties of State Objects
	Example: F14 Model
	Modifying Properties
	Using Class Methods

	Creating Estimation Objects
	Constructor
	Properties of Estimation Objects
	Example: F14 Model
	Modifying Properties
	Using Class Methods

	Block Reference
	Adaptive Lookup Table (1D Stair-Fit)
	Adaptive Lookup Table (2D Stair-Fit)
	Adaptive Lookup Table (nD Stair-Fit)

	Function Reference
	spetool

	Index

